doi: 10.3934/krm.2021047
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

From kinetic to fluid models of liquid crystals by the moment method

1. 

Institut de Mathématiques de Toulouse; UMR5219, Université de Toulouse; CNRS UPS, F-31062 Toulouse Cedex 9, France

2. 

CEREMADE, CNRS, Université Paris-Dauphine, Université PSL, 75016 Paris, France

3. 

CNRS, Université de Poitiers, UMR 7348, Laboratoire de Mathématiques et Applications (LMA), 86000 Poitiers, France

4. 

Department of Physics and Department of Mathematics, Duke University, Durham, NC 27708, USA

* Corresponding author: Pierre Degond

In memory of Bob Glassey
PD is a visiting professor of the Department of Mathematics, Imperial College London, UK
AF acknowledges support from the Project EFI ANR-17-CE40-0030 of the French National Research Agency
JGL acknowledges support from the Department of Mathematics, Imperial College London, under Nelder Fellowship award and the National Science Foundation under Grants DMS-1812573 and DMS-2106988

Received  June 2021 Revised  October 2021 Early access January 2022

This paper deals with the convergence of the Doi-Navier-Stokes model of liquid crystals to the Ericksen-Leslie model in the limit of the Deborah number tending to zero. While the literature has investigated this problem by means of the Hilbert expansion method, we develop the moment method, i.e. a method that exploits conservation relations obeyed by the collision operator. These are non-classical conservation relations which are associated with a new concept, that of Generalized Collision Invariant (GCI). In this paper, we develop the GCI concept and relate it to geometrical and analytical structures of the collision operator. Then, the derivation of the limit model using the GCI is performed in an arbitrary number of spatial dimensions and with non-constant and non-uniform polymer density. This non-uniformity generates new terms in the Ericksen-Leslie model.

Citation: Pierre Degond, Amic Frouvelle, Jian-Guo Liu. From kinetic to fluid models of liquid crystals by the moment method. Kinetic & Related Models, doi: 10.3934/krm.2021047
References:
[1]

J. M. Ball, Axisymmetry of critical points for the Onsager functional, Phil. Trans. R. Soc. A., 379 (2021), Paper No. 20200110, 13 pp.  Google Scholar

[2]

J. M. Ball, Mathematics and liquid crystals, Molecular Crystals and Liquid Crystals, 647 (2017), 1-27.  doi: 10.1080/15421406.2017.1289425.  Google Scholar

[3]

J. M. Ball, E. Feireisl and F. Otto, Mathematical Thermodynamics of Complex Fluids, Lecture notes in Mathematics 2200, Springer, 2017.  Google Scholar

[4]

C. BardosF. Golse and C. D. Levermore, Fluid dynamic limits of kinetic equations Ⅱ convergence proofs for the Boltzmann equation, Commun. Pure Appl. Math., 46 (1993), 667-753.  doi: 10.1002/cpa.3160460503.  Google Scholar

[5]

C. BardosF. Golse and D. Levermore, Fluid dynamic limits of kinetic equations. Ⅰ. Formal derivations, J. Stat. Phys., 63 (1991), 323-344.  doi: 10.1007/BF01026608.  Google Scholar

[6]

L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gas-molekülen, Sitzungsberichte Akad. Wiss., Vienna, part Ⅱ, 66 (1872), 275-370.  doi: 10.1017/CBO9781139381420.023.  Google Scholar

[7]

R. E. Caflisch, The fluid dynamical limit of the nonlinear Boltzmann equation, Commun. Pure Appl. Math., 33 (1980), 651-666.  doi: 10.1002/cpa.3160330506.  Google Scholar

[8]

M. C. CaldererD. GolovatyF.-H. Lin and C. Liu, Time evolution of nematic liquid crystals with variable degree of orientation, SIAM J. Math. Anal., 33 (2002), 1033-1047.  doi: 10.1137/S0036141099362086.  Google Scholar

[9]

M. C. Calderer and C. Liu, Liquid crystal flow: Dynamic and static configurations, SIAM J. Appl. Math., 60 (2000), 1925-1949.  doi: 10.1137/S0036139998336249.  Google Scholar

[10]

C. Cercinani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer, 2013. Google Scholar

[11]

S. Chapman, The kinetic theory of simple and composite gases: Viscosity, thermal conduction and diffusion, Proc. Roy. Soc., (London) A93 (1916/17), 1–20. Google Scholar

[12]

B. CharbonneauP. CharbonneauY. JinG. Parisi and F. Zamponi, Dimensional dependence of the Stokes–Einstein relation and its violation, The Journal of Chemical Physics, 139 (2013), 164502.  doi: 10.1063/1.4825177.  Google Scholar

[13]

X. Chen and J.-G. Liu, Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions, J. Diff. Eqs., 254 (2013), 2764-2802.  doi: 10.1016/j.jde.2013.01.005.  Google Scholar

[14]

P. ConstantinI. G. Kevrekidis and E. S. Titi, Asymptotic states of a Smoluchowski equation, Arch. Ration. Mech. Anal., 174 (2004), 365-384.  doi: 10.1007/s00205-004-0331-8.  Google Scholar

[15]

P. Constantin and J. Vukadinovic, Note on the number of steady states for a two-dimensional Smoluchowski equation, Nonlinearity, 18 (2005), 441-443.  doi: 10.1088/0951-7715/18/1/022.  Google Scholar

[16] P.-G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford Univ. Press, 1993.   Google Scholar
[17]

P. DegondA. DiezA. Frouvelle and S. Merino-Aceituno, Phase transitions and macroscopic limits in a BGK model of body-attitude coordination, J. Nonlinear Sci., 30 (2020), 2671-2736.  doi: 10.1007/s00332-020-09632-x.  Google Scholar

[18]

P. DegondG. DimarcoT. B. N. Mac and N. Wang, Macroscopic models of collective motion with repulsion, Commun. Math. Sci., 13 (2015), 1615-1638.  doi: 10.4310/CMS.2015.v13.n6.a12.  Google Scholar

[19]

P. DegondA. FrouvelleS. Merino-Aceituno and A. Trescases, Quaternions in collective dynamics, Multiscale Model. Simul., 16 (2018), 28-77.  doi: 10.1137/17M1135207.  Google Scholar

[20]

P. DegondJ.-G. LiuS. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory, Methods Appl. Anal., 20 (2013), 89-114.  doi: 10.4310/MAA.2013.v20.n2.a1.  Google Scholar

[21]

P. Degond and S. Merino-Aceituno, Nematic alignment of self-propelled particles: From particle to macroscopic dynamics, Math. Models Methods Appl. Sci., 30 (2020), 1935-1986.  doi: 10.1142/S021820252040014X.  Google Scholar

[22]

P. Degond, S. Merino-Aceituno, F. Vergnet and H. Yu, Coupled self-organized hydrodynamics and Stokes models for suspensions of active particles, J. Math. Fluid Mech., 21 (2019), Paper No. 6, 36 pp. doi: 10.1007/s00021-019-0406-9.  Google Scholar

[23]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.  doi: 10.1142/S0218202508003005.  Google Scholar

[24] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford Univ. Press, 1986.   Google Scholar
[25]

W. E and P. Zhang, A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit, Methods Appl. Anal., 13 (2006), 181-198.  doi: 10.4310/MAA.2006.v13.n2.a5.  Google Scholar

[26]

D. Enskog, Kinetische Theorie der Vorgänge in Mässig Verdünntent Gasen, 1, in Allgemeiner Teil, Almqvist & Wiksell, Uppsala, 1917. Google Scholar

[27]

J. L. Ericksen, Liquid crystals with variable degree of orientation, Arch. Ration. Mech. Anal., 113 (1990), 97-120.  doi: 10.1007/BF00380413.  Google Scholar

[28]

I. Fatkullin and V. Slastikov, A note on the Onsager model of nematic phase transitions, Commun. Math. Sci., 3 (2005), 21-26.  doi: 10.4310/CMS.2005.v3.n1.a2.  Google Scholar

[29]

I. Fatkullin and V. Slastikov, Critical points of the Onsager functional on a sphere, Nonlinearity, 18 (2005) 2565–2580. doi: 10.1088/0951-7715/18/6/008.  Google Scholar

[30]

A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters, Math. Models Methods Appl. Sci., 22 (2012), 1250011, 40 pp. doi: 10.1142/S021820251250011X.  Google Scholar

[31]

A. Frouvelle, Body-attitude alignment: First order phase transition, link with rodlike polymers through quaternions, and stability, arXiv: 2011.14891, 2021. Google Scholar

[32]

Y. Giga and A. Novotnỳ (eds.), Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, 2018. doi: 10.1007/978-3-319-13344-7.  Google Scholar

[33]

H. Grad, On the kinetic theory of rarefied gases, Commun. Pure Appl. Math., 2 (1949), 331-407.  doi: 10.1002/cpa.3160020403.  Google Scholar

[34]

D. Hilbert, Begründung der kinetischen Gastheorie, Mathematische Annalen, 72 (1912), 562-577.  doi: 10.1007/BF01456676.  Google Scholar

[35]

J. HuangF. Lin and C. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in ${\mathbb R}^2$, Comm. Math. Phys., 331 (2014), 805-850.  doi: 10.1007/s00220-014-2079-9.  Google Scholar

[36]

G. B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid, Proceedings of the Royal Society A, 102 (1922), 161-179.   Google Scholar

[37]

N. Kuzuu and M. Doi, Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation, Journal of the Physical Society of Japan, 52 (1983), 3486-3494.  doi: 10.1143/JPSJ.52.3486.  Google Scholar

[38]

F. M. Leslie, Some constitutive equations for anisotropic fluids, Quart. J. Mech. Appl. Math., 19 (1966), 357-370.  doi: 10.1093/qjmam/19.3.357.  Google Scholar

[39]

C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83 (1996), 1021-1065.  doi: 10.1007/BF02179552.  Google Scholar

[40]

F.-H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.  Google Scholar

[41]

F.-H. Lin, On nematic liquid crystals with variable degree of orientation, Comm. Pure Appl. Math., 44 (1991), 453-468.  doi: 10.1002/cpa.3160440404.  Google Scholar

[42]

F.-H. LinJ. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[43]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.  Google Scholar

[44]

F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 154 (2000), 135-156.  doi: 10.1007/s002050000102.  Google Scholar

[45]

F.-H. LinC. Liu and P. Zhang, On a micro-macro model for polymeric fluids near equilibrium, Comm. Pure Appl. Math., 60 (2007), 838-866.  doi: 10.1002/cpa.20159.  Google Scholar

[46]

F.-H. Lin and T. Zhang, Global small solutions to a complex fluid model in three dimensional, Arch. Ration. Mech. Anal., 216 (2015), 905-920.  doi: 10.1007/s00205-014-0822-1.  Google Scholar

[47]

H. Liu, Global orientation dynamics for liquid crystalline polymers, Phys. D, 228 (2007), 122-129.  doi: 10.1016/j.physd.2007.02.008.  Google Scholar

[48]

H. LiuH. Zhang and P. Zhang, Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential, Commun. Math. Sci., 3 (2005), 201-218.  doi: 10.4310/CMS.2005.v3.n2.a7.  Google Scholar

[49]

C. LuoH. Zhang and P. Zhang, The structure of equilibrium solutions of the one-dimensional Doi equation, Nonlinearity, 18 (2005), 379-389.  doi: 10.1088/0951-7715/18/1/018.  Google Scholar

[50]

W. Maier and A. Saupe, A simple molecular statistical theory of the nematic crystalline-liquid phase, I Z Naturf. A, 14 (1959), 882-889.   Google Scholar

[51]

J. C. Maxwell, On the dynamical theory of gases, Philos. Trans. Roy. Soc. London, 157 (1867), 49-88.   Google Scholar

[52]

A. Mellet, Fractional diffusion limit for collisional kinetic equations: A moments method, Indiana Univ. Math. J., 59 (2010), 1333-1360.  doi: 10.1512/iumj.2010.59.4128.  Google Scholar

[53]

L. Onsager, The effects of shape on the interaction of colloidal particles, Ann. N. Y. Acad. Sci., 51 (1949), 627-659.   Google Scholar

[54]

F. Otto and A. E. Tzavaras, Continuity of velocity gradients in suspensions of rod-like molecules, Comm. Math. Phys., 277 (2008), 729-758.  doi: 10.1007/s00220-007-0373-5.  Google Scholar

[55]

T. VicsekA. CziròkE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[56]

H. Wang and P. J. Hoffman, A unified view on the rotational symmetry of equilibiria of nematic polymers, dipolar nematic polymers, and polymers in higher dimensional space, Commun. Math. Sci., 6 (2008), 949-974.  doi: 10.4310/CMS.2008.v6.n4.a8.  Google Scholar

[57]

Q. WangW. EC. Liu and P.-W. Zhang, Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential, Phys. Rev. E, 65 (2002), 051504.  doi: 10.1103/PhysRevE.65.051504.  Google Scholar

[58]

W. WangL. Zhang and P. Zhang, Modeling and computation of liquid crystals, Acta Numer., 30 (2021), 765-851.  doi: 10.1017/S0962492921000088.  Google Scholar

[59]

W. WangP. Zhang and Z. Zhang, The small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equation, Comm. Pure Appl. Math., 68 (2015), 1326-1398.  doi: 10.1002/cpa.21549.  Google Scholar

[60]

W. WangP. Zhang and Z. Zhang, Well-posedness of the Ericksen–Leslie system, Arch. Ration. Mech. Anal., 210 (2013), 837-855.  doi: 10.1007/s00205-013-0659-z.  Google Scholar

[61]

H. Zhang and P. Zhang, Stable dynamic states at the nematic liquid crystals in weak shear flow, Phys. D, 232 (2007), 156-165.  doi: 10.1016/j.physd.2007.06.011.  Google Scholar

[62]

H. Zhang and P. Zhang, On the new multiscale rodlike model of polymeric fluids, SIAM J. Math. Anal., 40 (2008), 1246-1271.  doi: 10.1137/050640795.  Google Scholar

[63]

H. ZhouH. WangM. G. Forest and Q. Wang, A new proof on axisymmetric equilibria of a three-dimensional Smoluchowski equation, Nonlinearity, 18 (2005), 2815-2825.  doi: 10.1088/0951-7715/18/6/021.  Google Scholar

show all references

References:
[1]

J. M. Ball, Axisymmetry of critical points for the Onsager functional, Phil. Trans. R. Soc. A., 379 (2021), Paper No. 20200110, 13 pp.  Google Scholar

[2]

J. M. Ball, Mathematics and liquid crystals, Molecular Crystals and Liquid Crystals, 647 (2017), 1-27.  doi: 10.1080/15421406.2017.1289425.  Google Scholar

[3]

J. M. Ball, E. Feireisl and F. Otto, Mathematical Thermodynamics of Complex Fluids, Lecture notes in Mathematics 2200, Springer, 2017.  Google Scholar

[4]

C. BardosF. Golse and C. D. Levermore, Fluid dynamic limits of kinetic equations Ⅱ convergence proofs for the Boltzmann equation, Commun. Pure Appl. Math., 46 (1993), 667-753.  doi: 10.1002/cpa.3160460503.  Google Scholar

[5]

C. BardosF. Golse and D. Levermore, Fluid dynamic limits of kinetic equations. Ⅰ. Formal derivations, J. Stat. Phys., 63 (1991), 323-344.  doi: 10.1007/BF01026608.  Google Scholar

[6]

L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gas-molekülen, Sitzungsberichte Akad. Wiss., Vienna, part Ⅱ, 66 (1872), 275-370.  doi: 10.1017/CBO9781139381420.023.  Google Scholar

[7]

R. E. Caflisch, The fluid dynamical limit of the nonlinear Boltzmann equation, Commun. Pure Appl. Math., 33 (1980), 651-666.  doi: 10.1002/cpa.3160330506.  Google Scholar

[8]

M. C. CaldererD. GolovatyF.-H. Lin and C. Liu, Time evolution of nematic liquid crystals with variable degree of orientation, SIAM J. Math. Anal., 33 (2002), 1033-1047.  doi: 10.1137/S0036141099362086.  Google Scholar

[9]

M. C. Calderer and C. Liu, Liquid crystal flow: Dynamic and static configurations, SIAM J. Appl. Math., 60 (2000), 1925-1949.  doi: 10.1137/S0036139998336249.  Google Scholar

[10]

C. Cercinani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer, 2013. Google Scholar

[11]

S. Chapman, The kinetic theory of simple and composite gases: Viscosity, thermal conduction and diffusion, Proc. Roy. Soc., (London) A93 (1916/17), 1–20. Google Scholar

[12]

B. CharbonneauP. CharbonneauY. JinG. Parisi and F. Zamponi, Dimensional dependence of the Stokes–Einstein relation and its violation, The Journal of Chemical Physics, 139 (2013), 164502.  doi: 10.1063/1.4825177.  Google Scholar

[13]

X. Chen and J.-G. Liu, Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions, J. Diff. Eqs., 254 (2013), 2764-2802.  doi: 10.1016/j.jde.2013.01.005.  Google Scholar

[14]

P. ConstantinI. G. Kevrekidis and E. S. Titi, Asymptotic states of a Smoluchowski equation, Arch. Ration. Mech. Anal., 174 (2004), 365-384.  doi: 10.1007/s00205-004-0331-8.  Google Scholar

[15]

P. Constantin and J. Vukadinovic, Note on the number of steady states for a two-dimensional Smoluchowski equation, Nonlinearity, 18 (2005), 441-443.  doi: 10.1088/0951-7715/18/1/022.  Google Scholar

[16] P.-G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford Univ. Press, 1993.   Google Scholar
[17]

P. DegondA. DiezA. Frouvelle and S. Merino-Aceituno, Phase transitions and macroscopic limits in a BGK model of body-attitude coordination, J. Nonlinear Sci., 30 (2020), 2671-2736.  doi: 10.1007/s00332-020-09632-x.  Google Scholar

[18]

P. DegondG. DimarcoT. B. N. Mac and N. Wang, Macroscopic models of collective motion with repulsion, Commun. Math. Sci., 13 (2015), 1615-1638.  doi: 10.4310/CMS.2015.v13.n6.a12.  Google Scholar

[19]

P. DegondA. FrouvelleS. Merino-Aceituno and A. Trescases, Quaternions in collective dynamics, Multiscale Model. Simul., 16 (2018), 28-77.  doi: 10.1137/17M1135207.  Google Scholar

[20]

P. DegondJ.-G. LiuS. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory, Methods Appl. Anal., 20 (2013), 89-114.  doi: 10.4310/MAA.2013.v20.n2.a1.  Google Scholar

[21]

P. Degond and S. Merino-Aceituno, Nematic alignment of self-propelled particles: From particle to macroscopic dynamics, Math. Models Methods Appl. Sci., 30 (2020), 1935-1986.  doi: 10.1142/S021820252040014X.  Google Scholar

[22]

P. Degond, S. Merino-Aceituno, F. Vergnet and H. Yu, Coupled self-organized hydrodynamics and Stokes models for suspensions of active particles, J. Math. Fluid Mech., 21 (2019), Paper No. 6, 36 pp. doi: 10.1007/s00021-019-0406-9.  Google Scholar

[23]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.  doi: 10.1142/S0218202508003005.  Google Scholar

[24] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford Univ. Press, 1986.   Google Scholar
[25]

W. E and P. Zhang, A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit, Methods Appl. Anal., 13 (2006), 181-198.  doi: 10.4310/MAA.2006.v13.n2.a5.  Google Scholar

[26]

D. Enskog, Kinetische Theorie der Vorgänge in Mässig Verdünntent Gasen, 1, in Allgemeiner Teil, Almqvist & Wiksell, Uppsala, 1917. Google Scholar

[27]

J. L. Ericksen, Liquid crystals with variable degree of orientation, Arch. Ration. Mech. Anal., 113 (1990), 97-120.  doi: 10.1007/BF00380413.  Google Scholar

[28]

I. Fatkullin and V. Slastikov, A note on the Onsager model of nematic phase transitions, Commun. Math. Sci., 3 (2005), 21-26.  doi: 10.4310/CMS.2005.v3.n1.a2.  Google Scholar

[29]

I. Fatkullin and V. Slastikov, Critical points of the Onsager functional on a sphere, Nonlinearity, 18 (2005) 2565–2580. doi: 10.1088/0951-7715/18/6/008.  Google Scholar

[30]

A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters, Math. Models Methods Appl. Sci., 22 (2012), 1250011, 40 pp. doi: 10.1142/S021820251250011X.  Google Scholar

[31]

A. Frouvelle, Body-attitude alignment: First order phase transition, link with rodlike polymers through quaternions, and stability, arXiv: 2011.14891, 2021. Google Scholar

[32]

Y. Giga and A. Novotnỳ (eds.), Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, 2018. doi: 10.1007/978-3-319-13344-7.  Google Scholar

[33]

H. Grad, On the kinetic theory of rarefied gases, Commun. Pure Appl. Math., 2 (1949), 331-407.  doi: 10.1002/cpa.3160020403.  Google Scholar

[34]

D. Hilbert, Begründung der kinetischen Gastheorie, Mathematische Annalen, 72 (1912), 562-577.  doi: 10.1007/BF01456676.  Google Scholar

[35]

J. HuangF. Lin and C. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in ${\mathbb R}^2$, Comm. Math. Phys., 331 (2014), 805-850.  doi: 10.1007/s00220-014-2079-9.  Google Scholar

[36]

G. B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid, Proceedings of the Royal Society A, 102 (1922), 161-179.   Google Scholar

[37]

N. Kuzuu and M. Doi, Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation, Journal of the Physical Society of Japan, 52 (1983), 3486-3494.  doi: 10.1143/JPSJ.52.3486.  Google Scholar

[38]

F. M. Leslie, Some constitutive equations for anisotropic fluids, Quart. J. Mech. Appl. Math., 19 (1966), 357-370.  doi: 10.1093/qjmam/19.3.357.  Google Scholar

[39]

C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83 (1996), 1021-1065.  doi: 10.1007/BF02179552.  Google Scholar

[40]

F.-H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.  Google Scholar

[41]

F.-H. Lin, On nematic liquid crystals with variable degree of orientation, Comm. Pure Appl. Math., 44 (1991), 453-468.  doi: 10.1002/cpa.3160440404.  Google Scholar

[42]

F.-H. LinJ. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[43]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.  Google Scholar

[44]

F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 154 (2000), 135-156.  doi: 10.1007/s002050000102.  Google Scholar

[45]

F.-H. LinC. Liu and P. Zhang, On a micro-macro model for polymeric fluids near equilibrium, Comm. Pure Appl. Math., 60 (2007), 838-866.  doi: 10.1002/cpa.20159.  Google Scholar

[46]

F.-H. Lin and T. Zhang, Global small solutions to a complex fluid model in three dimensional, Arch. Ration. Mech. Anal., 216 (2015), 905-920.  doi: 10.1007/s00205-014-0822-1.  Google Scholar

[47]

H. Liu, Global orientation dynamics for liquid crystalline polymers, Phys. D, 228 (2007), 122-129.  doi: 10.1016/j.physd.2007.02.008.  Google Scholar

[48]

H. LiuH. Zhang and P. Zhang, Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential, Commun. Math. Sci., 3 (2005), 201-218.  doi: 10.4310/CMS.2005.v3.n2.a7.  Google Scholar

[49]

C. LuoH. Zhang and P. Zhang, The structure of equilibrium solutions of the one-dimensional Doi equation, Nonlinearity, 18 (2005), 379-389.  doi: 10.1088/0951-7715/18/1/018.  Google Scholar

[50]

W. Maier and A. Saupe, A simple molecular statistical theory of the nematic crystalline-liquid phase, I Z Naturf. A, 14 (1959), 882-889.   Google Scholar

[51]

J. C. Maxwell, On the dynamical theory of gases, Philos. Trans. Roy. Soc. London, 157 (1867), 49-88.   Google Scholar

[52]

A. Mellet, Fractional diffusion limit for collisional kinetic equations: A moments method, Indiana Univ. Math. J., 59 (2010), 1333-1360.  doi: 10.1512/iumj.2010.59.4128.  Google Scholar

[53]

L. Onsager, The effects of shape on the interaction of colloidal particles, Ann. N. Y. Acad. Sci., 51 (1949), 627-659.   Google Scholar

[54]

F. Otto and A. E. Tzavaras, Continuity of velocity gradients in suspensions of rod-like molecules, Comm. Math. Phys., 277 (2008), 729-758.  doi: 10.1007/s00220-007-0373-5.  Google Scholar

[55]

T. VicsekA. CziròkE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[56]

H. Wang and P. J. Hoffman, A unified view on the rotational symmetry of equilibiria of nematic polymers, dipolar nematic polymers, and polymers in higher dimensional space, Commun. Math. Sci., 6 (2008), 949-974.  doi: 10.4310/CMS.2008.v6.n4.a8.  Google Scholar

[57]

Q. WangW. EC. Liu and P.-W. Zhang, Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential, Phys. Rev. E, 65 (2002), 051504.  doi: 10.1103/PhysRevE.65.051504.  Google Scholar

[58]

W. WangL. Zhang and P. Zhang, Modeling and computation of liquid crystals, Acta Numer., 30 (2021), 765-851.  doi: 10.1017/S0962492921000088.  Google Scholar

[59]

W. WangP. Zhang and Z. Zhang, The small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equation, Comm. Pure Appl. Math., 68 (2015), 1326-1398.  doi: 10.1002/cpa.21549.  Google Scholar

[60]

W. WangP. Zhang and Z. Zhang, Well-posedness of the Ericksen–Leslie system, Arch. Ration. Mech. Anal., 210 (2013), 837-855.  doi: 10.1007/s00205-013-0659-z.  Google Scholar

[61]

H. Zhang and P. Zhang, Stable dynamic states at the nematic liquid crystals in weak shear flow, Phys. D, 232 (2007), 156-165.  doi: 10.1016/j.physd.2007.06.011.  Google Scholar

[62]

H. Zhang and P. Zhang, On the new multiscale rodlike model of polymeric fluids, SIAM J. Math. Anal., 40 (2008), 1246-1271.  doi: 10.1137/050640795.  Google Scholar

[63]

H. ZhouH. WangM. G. Forest and Q. Wang, A new proof on axisymmetric equilibria of a three-dimensional Smoluchowski equation, Nonlinearity, 18 (2005), 2815-2825.  doi: 10.1088/0951-7715/18/6/021.  Google Scholar

56]). (a) case $ n = 2 $. (b) case $ n \geq 3 $. The portions of the curves that correspond to stable equilibria are in blue, the unstable ones, in green.">Figure 1.  Graphical representation of the function $ \lambda \mapsto \rho^n(\lambda) $ (after [56]). (a) case $ n = 2 $. (b) case $ n \geq 3 $. The portions of the curves that correspond to stable equilibria are in blue, the unstable ones, in green.
Figure 2.  Graphical representation of Condition (101). The ambient three-dimensional space in the figure represents the flat space $ {\mathcal S}_0^n $ in which $ {\mathcal U}_0^n $ is an imbedded manifold represented by a surface. $ {\mathcal N} $ is a submanifold of $ {\mathcal U}_0^n $ depicted as the curvy blue line. It endows $ {\mathcal U}_0^n $ of a fiber bundle structure of base $ {\mathcal N} $. Let $ \Sigma \in {\mathcal U}_0^n $. It projects (in the bundle sense) onto $ A_\Omega \in {\mathcal N} $ and so, belongs to the fiber $ {\mathcal F}_\Omega $ represented by the curvy red line. The tangent space to $ {\mathcal N} $ at $ A_\Omega $, $ T_{A_\Omega} {\mathcal N} $ is represented by the magenta straight line. Its orthogonal $ (T_{A_\Omega} {\mathcal N})^\bot $ is the gray-shaded plane on the figure. It contains $ {\mathcal F}_\Omega $ by virtue of Lemma 5.6 (ii). Then, condition (101) means that the GCI associated with $ (\eta,\Sigma) $ are the functions $ \psi $ that cancel $ L_{\eta \Sigma} f $ for all $ f $ whose Q-tensor $ Q_f $ (represented by the point Q on the figure) belongs to $ (T_{A_\Omega} {\mathcal N})^\bot $
[1]

Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5785-5802. doi: 10.3934/dcdsb.2019106

[2]

Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381

[3]

Jinrui Huang, Wenjun Wang, Huanyao Wen. On $ L^p $ estimates for a simplified Ericksen-Leslie system. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1485-1507. doi: 10.3934/cpaa.2020075

[4]

Jishan Fan, Tohru Ozawa. Regularity criteria for a simplified Ericksen-Leslie system modeling the flow of liquid crystals. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 859-867. doi: 10.3934/dcds.2009.25.859

[5]

Sirui Li, Wei Wang, Pingwen Zhang. Local well-posedness and small Deborah limit of a molecule-based $Q$-tensor system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2611-2655. doi: 10.3934/dcdsb.2015.20.2611

[6]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[7]

Xiaoyu Zheng, Peter Palffy-Muhoray. One order parameter tensor mean field theory for biaxial liquid crystals. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 475-490. doi: 10.3934/dcdsb.2011.15.475

[8]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[9]

Claudia Totzeck. An anisotropic interaction model with collision avoidance. Kinetic & Related Models, 2020, 13 (6) : 1219-1242. doi: 10.3934/krm.2020044

[10]

Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2-D Ericksen--Leslie system. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 919-941. doi: 10.3934/dcdsb.2016.21.919

[11]

Etienne Emmrich, Robert Lasarzik. Weak-strong uniqueness for the general Ericksen—Leslie system in three dimensions. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4617-4635. doi: 10.3934/dcds.2018202

[12]

Hengrong Du, Changyou Wang. Global weak solutions to the stochastic Ericksen–Leslie system in dimension two. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021187

[13]

Gianluca Mola. Recovering a large number of diffusion constants in a parabolic equation from energy measurements. Inverse Problems & Imaging, 2018, 12 (3) : 527-543. doi: 10.3934/ipi.2018023

[14]

Tarek Saanouni. Energy scattering for the focusing fractional generalized Hartree equation. Communications on Pure & Applied Analysis, 2021, 20 (10) : 3637-3654. doi: 10.3934/cpaa.2021124

[15]

Wenji Chen, Jianfeng Zhou. Global existence of weak solutions to inhomogeneous Doi-Onsager equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021257

[16]

L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure & Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9

[17]

Giselle A. Monteiro, Milan Tvrdý. Generalized linear differential equations in a Banach space: Continuous dependence on a parameter. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 283-303. doi: 10.3934/dcds.2013.33.283

[18]

Amelia Álvarez, José-Luis Bravo, Manuel Fernández. The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1493-1501. doi: 10.3934/cpaa.2009.8.1493

[19]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4397-4419. doi: 10.3934/dcds.2021041

[20]

Craig Cowan. Uniqueness of solutions for elliptic systems and fourth order equations involving a parameter. Communications on Pure & Applied Analysis, 2016, 15 (2) : 519-533. doi: 10.3934/cpaa.2016.15.519

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (35)
  • HTML views (23)
  • Cited by (0)

Other articles
by authors

[Back to Top]