The global-in-time existence of classical solutions to the relativistic Vlasov-Maxwell (RVM) system in three space dimensions remains elusive after nearly four decades of mathematical research. In this note, a simplified "toy model" is presented and studied. This toy model retains one crucial aspect of the RVM system: the phase-space evolution of the distribution function is governed by a transport equation whose forcing term satisfies a wave equation with finite speed of propagation.
Citation: |
[1] |
F. Bouchut, F. Golse and C. Pallard, Classical solutions and the glassey-strauss theorem for the 3D vlasov-maxwell system, Arch. Ration. Mech. Anal., 170 (2003), 1-15.
doi: 10.1007/s00205-003-0265-6.![]() ![]() ![]() |
[2] |
P. Gérard and C. Pallard, A mean-field toy model for resonant transport, Kinet. Relat. Models, 3 (2010), 299-309.
doi: 10.3934/krm.2010.3.299.![]() ![]() ![]() |
[3] |
R. T. Glassey and J. W. Schaeffer, Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data, Comm. Math. Phys., 119 (1988), 353-384.
doi: 10.1007/BF01218078.![]() ![]() ![]() |
[4] |
R. T. Glassey and J. W. Schaeffer, On the 'one and one-half dimensional' relativistic Vlasov-Maxwell system, Math. Methods Appl. Sci., 13 (1990), 169-179.
doi: 10.1002/mma.1670130207.![]() ![]() ![]() |
[5] |
R. T. Glassey and J. W. Schaeffer, The "two and one-half dimensional" relativistic vlasov maxwell system, Comm. Math. Phys., 185 (1997), 257-284.
doi: 10.1007/s002200050090.![]() ![]() ![]() |
[6] |
R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90.
doi: 10.1007/BF00250732.![]() ![]() ![]() |
[7] |
R. T. Glassey and W. A. Strauss, Absence of shocks in an initially dilute collisionless plasma, Comm. Math. Phys., 113 (1987), 191-208.
doi: 10.1007/BF01223511.![]() ![]() ![]() |
[8] |
S. Klainerman and G. Staffilani, A new approach to study the Vlasov-Maxwell system, Commun. Pure Appl. Anal., 1 (2002), 103-125.
doi: 10.3934/cpaa.2002.1.103.![]() ![]() ![]() |
[9] |
J. Luk and R. M. Strain, A new continuation criterion for the relativistic Vlasov-Maxwell system, Comm. Math. Phys., 331 (2014)), 1005-1027.
doi: 10.1007/s00220-014-2108-8.![]() ![]() ![]() |
[10] |
C. Nguyen and S. Pankavich, A one-dimensional kinetic model of plasma dynamics with a transport field, Evol. Equ. Control Theory, 3 (2014), 681-698.
doi: 10.3934/eect.2014.3.681.![]() ![]() ![]() |
[11] |
K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations, 95 (1992), 281-303.
doi: 10.1016/0022-0396(92)90033-J.![]() ![]() ![]() |
[12] |
J. W. Schaeffer, The classical limit of the relativistic Vlasov-Maxwell system, Comm. Math. Phys., 104 (1986), 403-421.
doi: 10.1007/BF01210948.![]() ![]() ![]() |
[13] |
J. W. Schaeffer, Global existence of smooth solutions to the vlasov poisson system in three dimensions, Comm. Partial Differential Equations, 16 (1991), 1313-1335.
doi: 10.1080/03605309108820801.![]() ![]() ![]() |
[14] |
S. Wollman, An existence and uniqueness theorem for the Vlasov-Maxwell system, Comm. Pure Appl. Math., 37 (1984), 457-462.
doi: 10.1002/cpa.3160370404.![]() ![]() ![]() |