\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Boltzmann-Grad limit for the Lorentz gas with a Poisson distribution of obstacles

In memory of Prof. Robert T. Glassey (1946-2020)

Abstract Full Text(HTML) Related Papers Cited by
  • In this note, we propose a slightly different proof of Gallavotti's theorem ["Statistical Mechanics: A Short Treatise", Springer, 1999, pp. 48-55] on the derivation of the linear Boltzmann equation for the Lorentz gas with a Poisson distribution of obstacles in the Boltzmann-Grad limit.

    Mathematics Subject Classification: Primary: 82C40, 35Q20, 82C70; Secondary: 60K35, 60G55.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] V. Agoshkov, Boundary Value Problems for Transport Equations, Birkhäuser, Boston, 1998. doi: 10.1007/978-1-4612-1994-1.
    [2] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport, Ann. Scient. École Normale Sup., 3 (1970), 185-233.  doi: 10.24033/asens.1190.
    [3] C. BoldrighiniL. A. Bunimovich and Ya. G. Sinai, On the Boltzmann equation for the Lorentz gas, J. Stat. Phys., 32 (1983), 477-501.  doi: 10.1007/BF01008951.
    [4] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer Science+Business Media, New York, 1994. doi: 10.1007/978-1-4419-8524-8.
    [5] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. Vol. I: Elementary Theory and Methods, 2$^nd$ edition, Springer-Verlag, New York, Berlin, Heidelberg, 2003.
    [6] I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics. European Math. Soc., 2013.
    [7] G. Gallavotti, Divergences and the approach to equilibrium in the Lorentz and the wind-tree models, Phys. Rev., 185 (1969), 308-322.  doi: 10.1103/PhysRev.185.308.
    [8] G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas, Nota Interna No. 358, Istituto di Fisica, Università di Roma, 1972.
    [9] G. Gallavotti, Statistical Mechanics: A Short Treatise, Appendix 1.A.2, pp. 48–55, Springer, Berlin, Heidelberg, 1999. doi: 10.1007/978-3-662-03952-6.
    [10] R. T. Glassey, The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia 1996. doi: 10.1137/1.9781611971477.
    [11] R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90.  doi: 10.1007/BF00250732.
    [12] H. Grad, Principles of the Kinetic theory of Gases, in Handbuch der Physik Band XII. Thermodynamik der Gase (ed. S. Flügge), Springer-Verlag, 1958,205–294.
    [13] J. F. C. KingmanPoisson Processes, Oxford University Press, 1993. 
    [14] O. E. Lanford, Time evolution of large classical systems, in Dynamical Systems, Theory And Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Lect. Notes in Physics 38, (ed. J. Moser) Springer Verlag, 1975, 1–111.
    [15] G. Last and  M. PenroseLectures on the Poisson Process, Cambridge Univ. Press, 2018. 
    [16] H. Lorentz, Le mouvement des électrons dans les métaux, Arch. Neerl., 10 (1905), 336-371. 
    [17] G. C. Papanicolaou, Asymptotic analysis of transport processes, Bull. Amer. Math. Soc., 81 (1975), 330-392.  doi: 10.1090/S0002-9904-1975-13744-X.
    [18] Y. Sone, Molecular Gas Dynamics, Theory, Techniques and Applications, Birkhäuser, Boston, 2007. doi: 10.1007/978-0-8176-4573-1.
    [19] H. Spohn, The Lorentz process converges to a random flight process, Commun. Math. Phys., 60 (1978), 277-290.  doi: 10.1007/BF01612893.
  • 加载中
SHARE

Article Metrics

HTML views(291) PDF downloads(216) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return