We establish existence of finite energy weak solutions to the kinetic Fokker-Planck equation and the linear Landau equation near Maxwellian, in the presence of specular reflection boundary condition for general domains. Moreover, by using a method of reflection and the $ S_p $ estimate of [
Citation: |
[1] |
D. Albritton, S. Armstrong, J.-C. Mourrat and M. Novack, Variational methods for the kinetic Fokker-Planck equation, arXiv: 1902.04037.
![]() |
[2] |
R. Beals and V. Protopopescu, Abstract time-dependent transport equations, J. Math. Anal. Appl., 121 (1987), 370-405.
doi: 10.1016/0022-247X(87)90252-6.![]() ![]() ![]() |
[3] |
M. Bramanti, M.C. Cerutti, M. Manfredini, $L^p$ estimates for some ultraparabolic operators with discontinuous coefficients, J. Math. Anal. Appl., 200 (1996), no. 2,332–354.
![]() |
[4] |
M. Bramanti, G. Cupini, E. Lanconelli, E. Priola, Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients., Math. Nachr., 286 (2013), no. 11-12, 1087–1101.
![]() |
[5] |
H. Dong, Timur Yastrzhembskiy, Global $L_p$ estimates for kinetic Kolmogorov-Fokker-Planck equations in divergence form, in preparation.
![]() |
[6] |
H. Dong, Y. Guo and Z. Ouyang, The Vlasov-Poisson-Landau system with the specular reflection boundary condition, arXiv: 2010.05314.
![]() |
[7] |
H. Dong and T. Yastrzhembskiy, Global $L_p$ estimates for kinetic Kolmogorov-Fokker-Planck equations in nondivergence form, arXiv: 2107.08568, to appear in Arch. Ration. Mech. Anal..
![]() |
[8] |
R. Duan, S. Liu, S. Sakamoto and R. M. Strain, Global mild solutions of the Landau and non-cutoff Boltzmann equations, Comm. Pure Appl. Math., 74 (2021), 932-1020.
doi: 10.1002/cpa.21920.![]() ![]() ![]() |
[9] |
Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Comm. Math. Phys., 154 (1993), 245-263.
doi: 10.1007/BF02096997.![]() ![]() ![]() |
[10] |
Y. Guo, Singular solutions of the Vlasov-Maxwell system on a half Line, Arch. Rational Mech. Anal., 131 (1995), 241-304.
doi: 10.1007/BF00382888.![]() ![]() ![]() |
[11] |
Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys., 231 (2002), 391-434.
doi: 10.1007/s00220-002-0729-9.![]() ![]() ![]() |
[12] |
Y. Guo, H. J. Hwang, J. W. Jang and Z. Ouyang, The Landau equation with the specular reflection boundary condition, Arch. Ration. Mech. Anal., 236 (2020), 1389-1454.
doi: 10.1007/s00205-020-01496-5.![]() ![]() ![]() |
[13] |
H. J. Hwang, J. Jang and J. Jung, The Fokker-Planck equation with absorbing boundary conditions in bounded domains, SIAM J. Math. Anal., 50 (2018), 2194-2232.
doi: 10.1137/16M1109928.![]() ![]() ![]() |
[14] |
H. J. Hwang, J. Jang and J. J. L. Velázquez, The Fokker-Planck equation with absorbing boundary conditions, Arch. Ration. Mech. Anal., 214 (2014), 183-233.
doi: 10.1007/s00205-014-0758-5.![]() ![]() ![]() |
[15] |
H. J. Hwang, J. Jang and J. J. L. Velázquez, Nonuniqueness for the kinetic Fokker-Planck equation with inelastic boundary conditions, Arch. Ration. Mech. Anal., 231 (2019), 1309-1400.
doi: 10.1007/s00205-018-1299-0.![]() ![]() ![]() |
[16] |
J. Kim, Y. Guo and H. J. Hwang, An $L^2$ to $L^{\infty}$ framework for the Landau equation, Peking Math. J., 3 (2020), 131-202.
doi: 10.1007/s42543-019-00018-x.![]() ![]() ![]() |
[17] |
N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Graduate Studies in Mathematics, 96. American Mathematical Society, Providence, RI, 2008.
doi: 10.1090/gsm/096.![]() ![]() ![]() |
[18] |
N. V. Krylov, On a representation of fully nonlinear elliptic operators in terms of pure second order derivatives and its applications, J. Math. Sci. (N.Y.), 177 (2011), 1-26.
doi: 10.1007/s10958-011-0445-0.![]() ![]() ![]() |
[19] |
M. Litsgård and K. Nyström, The Dirichlet problem for Kolmogorov-Fokker-Planck type equations with rough coefficients, J. Funct. Anal., 281 (2021), Paper No. 109226, 39 pp.
doi: 10.1016/j.jfa.2021.109226.![]() ![]() ![]() |
[20] |
T. S. Motzkin and W. Wasow, On the approximation of linear elliptic differential equations by difference equations with positive coefficients, J. Math. Physics, 31 (1953), 253-259.
![]() ![]() |
[21] |
L. Niebel and R. Zacher, Kinetic maximal $L^p$-regularity with temporal weights and application to quasilinear kinetic diffusion equations., J. Differential Equations, 307 (2022), 29-82.
![]() ![]() |
[22] |
S. Polidoro and M. A. Ragusa, Sobolev-Morrey spaces related to an ultraparabolic equation, Manuscripta Math., 96 (1998), 371-392.
doi: 10.1007/s002290050072.![]() ![]() ![]() |