-
Previous Article
The Boltzmann-Grad limit for the Lorentz gas with a Poisson distribution of obstacles
- KRM Home
- This Issue
-
Next Article
From kinetic to fluid models of liquid crystals by the moment method
Kinetic Fokker-Planck and Landau equations with specular reflection boundary condition
Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA |
We establish existence of finite energy weak solutions to the kinetic Fokker-Planck equation and the linear Landau equation near Maxwellian, in the presence of specular reflection boundary condition for general domains. Moreover, by using a method of reflection and the $ S_p $ estimate of [
References:
[1] |
D. Albritton, S. Armstrong, J.-C. Mourrat and M. Novack, Variational methods for the kinetic Fokker-Planck equation, arXiv: 1902.04037. |
[2] |
R. Beals and V. Protopopescu,
Abstract time-dependent transport equations, J. Math. Anal. Appl., 121 (1987), 370-405.
doi: 10.1016/0022-247X(87)90252-6. |
[3] |
M. Bramanti, M.C. Cerutti, M. Manfredini, $L^p$ estimates for some ultraparabolic operators with discontinuous coefficients, J. Math. Anal. Appl., 200 (1996), no. 2,332–354. |
[4] |
M. Bramanti, G. Cupini, E. Lanconelli, E. Priola, Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients., Math. Nachr., 286 (2013), no. 11-12, 1087–1101. |
[5] |
H. Dong, Timur Yastrzhembskiy, Global $L_p$ estimates for kinetic Kolmogorov-Fokker-Planck equations in divergence form, in preparation. |
[6] |
H. Dong, Y. Guo and Z. Ouyang, The Vlasov-Poisson-Landau system with the specular reflection boundary condition, arXiv: 2010.05314. |
[7] |
H. Dong and T. Yastrzhembskiy, Global $L_p$ estimates for kinetic Kolmogorov-Fokker-Planck equations in nondivergence form, arXiv: 2107.08568, to appear in Arch. Ration. Mech. Anal.. |
[8] |
R. Duan, S. Liu, S. Sakamoto and R. M. Strain,
Global mild solutions of the Landau and non-cutoff Boltzmann equations, Comm. Pure Appl. Math., 74 (2021), 932-1020.
doi: 10.1002/cpa.21920. |
[9] |
Y. Guo,
Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Comm. Math. Phys., 154 (1993), 245-263.
doi: 10.1007/BF02096997. |
[10] |
Y. Guo,
Singular solutions of the Vlasov-Maxwell system on a half Line, Arch. Rational Mech. Anal., 131 (1995), 241-304.
doi: 10.1007/BF00382888. |
[11] |
Y. Guo,
The Landau equation in a periodic box, Comm. Math. Phys., 231 (2002), 391-434.
doi: 10.1007/s00220-002-0729-9. |
[12] |
Y. Guo, H. J. Hwang, J. W. Jang and Z. Ouyang,
The Landau equation with the specular reflection boundary condition, Arch. Ration. Mech. Anal., 236 (2020), 1389-1454.
doi: 10.1007/s00205-020-01496-5. |
[13] |
H. J. Hwang, J. Jang and J. Jung,
The Fokker-Planck equation with absorbing boundary conditions in bounded domains, SIAM J. Math. Anal., 50 (2018), 2194-2232.
doi: 10.1137/16M1109928. |
[14] |
H. J. Hwang, J. Jang and J. J. L. Velázquez,
The Fokker-Planck equation with absorbing boundary conditions, Arch. Ration. Mech. Anal., 214 (2014), 183-233.
doi: 10.1007/s00205-014-0758-5. |
[15] |
H. J. Hwang, J. Jang and J. J. L. Velázquez,
Nonuniqueness for the kinetic Fokker-Planck equation with inelastic boundary conditions, Arch. Ration. Mech. Anal., 231 (2019), 1309-1400.
doi: 10.1007/s00205-018-1299-0. |
[16] |
J. Kim, Y. Guo and H. J. Hwang,
An $L^2$ to $L^{\infty}$ framework for the Landau equation, Peking Math. J., 3 (2020), 131-202.
doi: 10.1007/s42543-019-00018-x. |
[17] |
N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Graduate Studies in Mathematics, 96. American Mathematical Society, Providence, RI, 2008.
doi: 10.1090/gsm/096. |
[18] |
N. V. Krylov,
On a representation of fully nonlinear elliptic operators in terms of pure second order derivatives and its applications, J. Math. Sci. (N.Y.), 177 (2011), 1-26.
doi: 10.1007/s10958-011-0445-0. |
[19] |
M. Litsgård and K. Nyström, The Dirichlet problem for Kolmogorov-Fokker-Planck type equations with rough coefficients, J. Funct. Anal., 281 (2021), Paper No. 109226, 39 pp.
doi: 10.1016/j.jfa.2021.109226. |
[20] |
T. S. Motzkin and W. Wasow,
On the approximation of linear elliptic differential equations by difference equations with positive coefficients, J. Math. Physics, 31 (1953), 253-259.
|
[21] |
L. Niebel and R. Zacher,
Kinetic maximal $L^p$-regularity with temporal weights and application to quasilinear kinetic diffusion equations., J. Differential Equations, 307 (2022), 29-82.
|
[22] |
S. Polidoro and M. A. Ragusa,
Sobolev-Morrey spaces related to an ultraparabolic equation, Manuscripta Math., 96 (1998), 371-392.
doi: 10.1007/s002290050072. |
show all references
References:
[1] |
D. Albritton, S. Armstrong, J.-C. Mourrat and M. Novack, Variational methods for the kinetic Fokker-Planck equation, arXiv: 1902.04037. |
[2] |
R. Beals and V. Protopopescu,
Abstract time-dependent transport equations, J. Math. Anal. Appl., 121 (1987), 370-405.
doi: 10.1016/0022-247X(87)90252-6. |
[3] |
M. Bramanti, M.C. Cerutti, M. Manfredini, $L^p$ estimates for some ultraparabolic operators with discontinuous coefficients, J. Math. Anal. Appl., 200 (1996), no. 2,332–354. |
[4] |
M. Bramanti, G. Cupini, E. Lanconelli, E. Priola, Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients., Math. Nachr., 286 (2013), no. 11-12, 1087–1101. |
[5] |
H. Dong, Timur Yastrzhembskiy, Global $L_p$ estimates for kinetic Kolmogorov-Fokker-Planck equations in divergence form, in preparation. |
[6] |
H. Dong, Y. Guo and Z. Ouyang, The Vlasov-Poisson-Landau system with the specular reflection boundary condition, arXiv: 2010.05314. |
[7] |
H. Dong and T. Yastrzhembskiy, Global $L_p$ estimates for kinetic Kolmogorov-Fokker-Planck equations in nondivergence form, arXiv: 2107.08568, to appear in Arch. Ration. Mech. Anal.. |
[8] |
R. Duan, S. Liu, S. Sakamoto and R. M. Strain,
Global mild solutions of the Landau and non-cutoff Boltzmann equations, Comm. Pure Appl. Math., 74 (2021), 932-1020.
doi: 10.1002/cpa.21920. |
[9] |
Y. Guo,
Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Comm. Math. Phys., 154 (1993), 245-263.
doi: 10.1007/BF02096997. |
[10] |
Y. Guo,
Singular solutions of the Vlasov-Maxwell system on a half Line, Arch. Rational Mech. Anal., 131 (1995), 241-304.
doi: 10.1007/BF00382888. |
[11] |
Y. Guo,
The Landau equation in a periodic box, Comm. Math. Phys., 231 (2002), 391-434.
doi: 10.1007/s00220-002-0729-9. |
[12] |
Y. Guo, H. J. Hwang, J. W. Jang and Z. Ouyang,
The Landau equation with the specular reflection boundary condition, Arch. Ration. Mech. Anal., 236 (2020), 1389-1454.
doi: 10.1007/s00205-020-01496-5. |
[13] |
H. J. Hwang, J. Jang and J. Jung,
The Fokker-Planck equation with absorbing boundary conditions in bounded domains, SIAM J. Math. Anal., 50 (2018), 2194-2232.
doi: 10.1137/16M1109928. |
[14] |
H. J. Hwang, J. Jang and J. J. L. Velázquez,
The Fokker-Planck equation with absorbing boundary conditions, Arch. Ration. Mech. Anal., 214 (2014), 183-233.
doi: 10.1007/s00205-014-0758-5. |
[15] |
H. J. Hwang, J. Jang and J. J. L. Velázquez,
Nonuniqueness for the kinetic Fokker-Planck equation with inelastic boundary conditions, Arch. Ration. Mech. Anal., 231 (2019), 1309-1400.
doi: 10.1007/s00205-018-1299-0. |
[16] |
J. Kim, Y. Guo and H. J. Hwang,
An $L^2$ to $L^{\infty}$ framework for the Landau equation, Peking Math. J., 3 (2020), 131-202.
doi: 10.1007/s42543-019-00018-x. |
[17] |
N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Graduate Studies in Mathematics, 96. American Mathematical Society, Providence, RI, 2008.
doi: 10.1090/gsm/096. |
[18] |
N. V. Krylov,
On a representation of fully nonlinear elliptic operators in terms of pure second order derivatives and its applications, J. Math. Sci. (N.Y.), 177 (2011), 1-26.
doi: 10.1007/s10958-011-0445-0. |
[19] |
M. Litsgård and K. Nyström, The Dirichlet problem for Kolmogorov-Fokker-Planck type equations with rough coefficients, J. Funct. Anal., 281 (2021), Paper No. 109226, 39 pp.
doi: 10.1016/j.jfa.2021.109226. |
[20] |
T. S. Motzkin and W. Wasow,
On the approximation of linear elliptic differential equations by difference equations with positive coefficients, J. Math. Physics, 31 (1953), 253-259.
|
[21] |
L. Niebel and R. Zacher,
Kinetic maximal $L^p$-regularity with temporal weights and application to quasilinear kinetic diffusion equations., J. Differential Equations, 307 (2022), 29-82.
|
[22] |
S. Polidoro and M. A. Ragusa,
Sobolev-Morrey spaces related to an ultraparabolic equation, Manuscripta Math., 96 (1998), 371-392.
doi: 10.1007/s002290050072. |
[1] |
Anis Dhifaoui. $ L^p $-strong solution for the stationary exterior Stokes equations with Navier boundary condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1403-1420. doi: 10.3934/dcdss.2022086 |
[2] |
VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure and Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003 |
[3] |
Andrea Bonfiglioli, Ermanno Lanconelli. Lie groups related to Hörmander operators and Kolmogorov-Fokker-Planck equations. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1587-1614. doi: 10.3934/cpaa.2012.11.1587 |
[4] |
Alessio Fiscella. Schrödinger–Kirchhoff–Hardy $ p $–fractional equations without the Ambrosetti–Rabinowitz condition. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1993-2007. doi: 10.3934/dcdss.2020154 |
[5] |
Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic and Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601 |
[6] |
Mihai Mihăilescu, Julio D. Rossi. Monotonicity with respect to $ p $ of the First Nontrivial Eigenvalue of the $ p $-Laplacian with Homogeneous Neumann Boundary Conditions. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4363-4371. doi: 10.3934/cpaa.2020198 |
[7] |
Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021 |
[8] |
Joaquim Borges, Cristina Fernández-Córdoba, Roger Ten-Valls. On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 169-179. doi: 10.3934/amc.2018011 |
[9] |
Elhoussine Azroul, Abdelmoujib Benkirane, and Mohammed Shimi. On a nonlocal problem involving the fractional $ p(x,.) $-Laplacian satisfying Cerami condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3479-3495. doi: 10.3934/dcdss.2020425 |
[10] |
Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020123 |
[11] |
Roghayeh Mohammadi Hesari, Mahboubeh Hosseinabadi, Rashid Rezaei, Karim Samei. $\mathbb{F}_{p^{m}}\mathbb{F}_{p^{m}}{[u^2]}$-additive skew cyclic codes of length $2p^s $. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022023 |
[12] |
Jinrui Huang, Wenjun Wang, Huanyao Wen. On $ L^p $ estimates for a simplified Ericksen-Leslie system. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1485-1507. doi: 10.3934/cpaa.2020075 |
[13] |
Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085 |
[14] |
Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta. Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$. Advances in Mathematics of Communications, 2018, 12 (2) : 231-262. doi: 10.3934/amc.2018016 |
[15] |
Abdeladim El Akri, Lahcen Maniar. Uniform indirect boundary controllability of semi-discrete $ 1 $-$ d $ coupled wave equations. Mathematical Control and Related Fields, 2020, 10 (4) : 669-698. doi: 10.3934/mcrf.2020015 |
[16] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[17] |
Shixiong Wang, Longjiang Qu, Chao Li, Huaxiong Wang. Further improvement of factoring $ N = p^r q^s$ with partial known bits. Advances in Mathematics of Communications, 2019, 13 (1) : 121-135. doi: 10.3934/amc.2019007 |
[18] |
Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252 |
[19] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3497-3528. doi: 10.3934/dcdss.2020442 |
[20] |
Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure and Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033 |
2020 Impact Factor: 1.432
Tools
Article outline
[Back to Top]