June  2022, 15(3): 317-340. doi: 10.3934/krm.2022004

The inviscid limit for the 2D Navier-Stokes equations in bounded domains

1. 

Laboratoire J.-L. Lions, Sorbonne Université, 75252 Paris, Cedex 05, France

2. 

Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA

3. 

Department of Mathematics, Penn State University, State College, PA 16802, USA

4. 

Department of Mathematics, Texas A&M University, College Station, TX 77843, USA

5. 

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK

6. 

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

* Corresponding author: Toan T. Nguyen

In memory of Robert T. Glassey

Received  November 2021 Published  June 2022 Early access  January 2022

Fund Project: The second author is partly supported by the AMS-Simons Travel Grant Award and the third author is supported by the NSF under grant DMS-2054726.

We prove the inviscid limit for the incompressible Navier-Stokes equations for data that are analytic only near the boundary in a general two-dimensional bounded domain. Our proof is direct, using the vorticity formulation with a nonlocal boundary condition, the explicit semigroup of the linear Stokes problem near the flatten boundary, and the standard wellposedness theory of Navier-Stokes equations in Sobolev spaces away from the boundary.

Citation: Claude W. Bardos, Trinh T. Nguyen, Toan T. Nguyen, Edriss S. Titi. The inviscid limit for the 2D Navier-Stokes equations in bounded domains. Kinetic and Related Models, 2022, 15 (3) : 317-340. doi: 10.3934/krm.2022004
References:
[1]

C. R. Anderson, Vorticity boundary conditions and boundary vorticity generation for two-dimensional viscous incompressible flows, J. Comput. Phys., 80 (1989), 72-97. 

[2]

K. Asano, Zero-viscosity limit of the incompressible Navier-Stokes equation. II, Mathematical Analysis of Fluid and Plasma Dynamics, I (Kyoto, 1986). 656 (1988), 105–128.

[3]

C. Bardos and S. Benachour, Domaine d'analycité des solutions de l'équation d'Euler dans un ouvert de $R^n$, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4 (1977), 647–687 (French).

[4]

C. Bardos and E. S. Titi, $C^{0,\alpha}$ boundary regularity for the pressure in weak solutions of the 2d Euler equations, Philosophical Transactions of the Royal Society A, 2021, to appear.

[5]

C. W. Bardos and E. S. Titi, Mathematics and turbulence: Where do we stand?, J. Turbul., 14 (2013), 42-76.  doi: 10.1080/14685248.2013.771838.

[6]

R. E. Caflisch, A simplified version of the abstract Cauchy-Kowalewski theorem with weak singularities, Bull. Amer. Math. Soc. (N.S.), 23 (1990), 495-500.  doi: 10.1090/S0273-0979-1990-15962-2.

[7]

D. Gérard-VaretY. Maekawa and N. Masmoudi, Gevrey stability of Prandtl expansions for 2-dimensional Navier-Stokes flows, Duke Math. J., 167 (2018), 2531-2631.  doi: 10.1215/00127094-2018-0020.

[8]

D. Gérard-Varet, Y. Maekawa and N. Masmoudi, Optimal Prandtl expansion around a concave boundary layer, arXiv: 2005.05022, 2020.

[9]

E. Grenier, On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math., 53 (2000), 1067-1091.  doi: 10.1002/1097-0312(200009)53:9<1067::AID-CPA1>3.0.CO;2-Q.

[10]

E. GrenierY. Guo and T. T. Nguyen, Spectral instability of characteristic boundary layer flows, Duke Math. J., 165 (2016), 3085-3146.  doi: 10.1215/00127094-3645437.

[11]

E. GrenierY. Guo and T. T. Nguyen, Spectral instability of general symmetric shear flows in a two-dimensional channel, Adv. Math., 292 (2016), 52-110.  doi: 10.1016/j.aim.2016.01.007.

[12]

E. Grenier and T. T. Nguyen, $L^\infty$ instability of Prandtl layers, Ann. PDE, 5 (2019), Paper No. 18, 36 pp. doi: 10.1007/s40818-019-0074-3.

[13]

E. Grenier and T. T. Nguyen, On nonlinear instability of Prandtl's boundary layers: The case of Rayleigh's stable shear flows, arXiv: 1706.01282, 2017.

[14]

E. Grenier and T. T. Nguyen, Generator functions and their applications, Proc. Amer. Math. Soc. Ser. B, 8 (2021), 245-251.  doi: 10.1090/bproc/91.

[15]

T. Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, Seminar on Nonlinear Partial Differential Equations (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., Vol. 2, Springer, New York, (1984), 85–98. doi: 10.1007/978-1-4612-1110-5_6.

[16]

I. Kukavica, T. T. Nguyen, V. Vicol and F. Wang, On the Euler+Prandtl expansion for the Navier-Stokes equations, Journal of Mathematical Fluid Mechanics, to appear.

[17]

I. Kukavica and V. Vicol, On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations, Nonlinearity, 24 (2011), 765-796.  doi: 10.1088/0951-7715/24/3/004.

[18]

I. KukavicaV. Vicol and F. Wang, The inviscid limit for the Navier-Stokes equations with data analytic only near the boundary, Arch. Ration. Mech. Anal., 237 (2020), 779-827.  doi: 10.1007/s00205-020-01517-3.

[19]

M. C. LombardoM. Cannone and M. Sammartino, Well-posedness of the boundary layer equations, SIAM J. Math. Anal., 35 (2003), 987-1004.  doi: 10.1137/S0036141002412057.

[20]

Y. Maekawa, On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane, Comm. Pure Appl. Math., 67 (2014), 1045-1128.  doi: 10.1002/cpa.21516.

[21]

T. T. Nguyen and T. T. Nguyen, The inviscid limit of Navier-Stokes equations for analytic data on the half-space, Arch. Ration.Mech. Anal., 230 (2018), 1103-1129.  doi: 10.1007/s00205-018-1266-9.

[22]

M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Comm. Math. Phys., 192 (1998), 463-491.  doi: 10.1007/s002200050305.

[23]

C. Wang and Y. Wang, Zero-viscosity limit of the Navier-Stokes equations in a simply-connected bounded domain under the analytic setting, J. Math. Fluid Mech., 22 (2020), Paper No. 8, 58 pp. doi: 10.1007/s00021-019-0471-0.

show all references

References:
[1]

C. R. Anderson, Vorticity boundary conditions and boundary vorticity generation for two-dimensional viscous incompressible flows, J. Comput. Phys., 80 (1989), 72-97. 

[2]

K. Asano, Zero-viscosity limit of the incompressible Navier-Stokes equation. II, Mathematical Analysis of Fluid and Plasma Dynamics, I (Kyoto, 1986). 656 (1988), 105–128.

[3]

C. Bardos and S. Benachour, Domaine d'analycité des solutions de l'équation d'Euler dans un ouvert de $R^n$, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4 (1977), 647–687 (French).

[4]

C. Bardos and E. S. Titi, $C^{0,\alpha}$ boundary regularity for the pressure in weak solutions of the 2d Euler equations, Philosophical Transactions of the Royal Society A, 2021, to appear.

[5]

C. W. Bardos and E. S. Titi, Mathematics and turbulence: Where do we stand?, J. Turbul., 14 (2013), 42-76.  doi: 10.1080/14685248.2013.771838.

[6]

R. E. Caflisch, A simplified version of the abstract Cauchy-Kowalewski theorem with weak singularities, Bull. Amer. Math. Soc. (N.S.), 23 (1990), 495-500.  doi: 10.1090/S0273-0979-1990-15962-2.

[7]

D. Gérard-VaretY. Maekawa and N. Masmoudi, Gevrey stability of Prandtl expansions for 2-dimensional Navier-Stokes flows, Duke Math. J., 167 (2018), 2531-2631.  doi: 10.1215/00127094-2018-0020.

[8]

D. Gérard-Varet, Y. Maekawa and N. Masmoudi, Optimal Prandtl expansion around a concave boundary layer, arXiv: 2005.05022, 2020.

[9]

E. Grenier, On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math., 53 (2000), 1067-1091.  doi: 10.1002/1097-0312(200009)53:9<1067::AID-CPA1>3.0.CO;2-Q.

[10]

E. GrenierY. Guo and T. T. Nguyen, Spectral instability of characteristic boundary layer flows, Duke Math. J., 165 (2016), 3085-3146.  doi: 10.1215/00127094-3645437.

[11]

E. GrenierY. Guo and T. T. Nguyen, Spectral instability of general symmetric shear flows in a two-dimensional channel, Adv. Math., 292 (2016), 52-110.  doi: 10.1016/j.aim.2016.01.007.

[12]

E. Grenier and T. T. Nguyen, $L^\infty$ instability of Prandtl layers, Ann. PDE, 5 (2019), Paper No. 18, 36 pp. doi: 10.1007/s40818-019-0074-3.

[13]

E. Grenier and T. T. Nguyen, On nonlinear instability of Prandtl's boundary layers: The case of Rayleigh's stable shear flows, arXiv: 1706.01282, 2017.

[14]

E. Grenier and T. T. Nguyen, Generator functions and their applications, Proc. Amer. Math. Soc. Ser. B, 8 (2021), 245-251.  doi: 10.1090/bproc/91.

[15]

T. Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, Seminar on Nonlinear Partial Differential Equations (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., Vol. 2, Springer, New York, (1984), 85–98. doi: 10.1007/978-1-4612-1110-5_6.

[16]

I. Kukavica, T. T. Nguyen, V. Vicol and F. Wang, On the Euler+Prandtl expansion for the Navier-Stokes equations, Journal of Mathematical Fluid Mechanics, to appear.

[17]

I. Kukavica and V. Vicol, On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations, Nonlinearity, 24 (2011), 765-796.  doi: 10.1088/0951-7715/24/3/004.

[18]

I. KukavicaV. Vicol and F. Wang, The inviscid limit for the Navier-Stokes equations with data analytic only near the boundary, Arch. Ration. Mech. Anal., 237 (2020), 779-827.  doi: 10.1007/s00205-020-01517-3.

[19]

M. C. LombardoM. Cannone and M. Sammartino, Well-posedness of the boundary layer equations, SIAM J. Math. Anal., 35 (2003), 987-1004.  doi: 10.1137/S0036141002412057.

[20]

Y. Maekawa, On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane, Comm. Pure Appl. Math., 67 (2014), 1045-1128.  doi: 10.1002/cpa.21516.

[21]

T. T. Nguyen and T. T. Nguyen, The inviscid limit of Navier-Stokes equations for analytic data on the half-space, Arch. Ration.Mech. Anal., 230 (2018), 1103-1129.  doi: 10.1007/s00205-018-1266-9.

[22]

M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Comm. Math. Phys., 192 (1998), 463-491.  doi: 10.1007/s002200050305.

[23]

C. Wang and Y. Wang, Zero-viscosity limit of the Navier-Stokes equations in a simply-connected bounded domain under the analytic setting, J. Math. Fluid Mech., 22 (2020), Paper No. 8, 58 pp. doi: 10.1007/s00021-019-0471-0.

[1]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[2]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[3]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[4]

Hongjie Dong, Kunrui Wang. Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5289-5323. doi: 10.3934/dcds.2020228

[5]

Matthew Gardner, Adam Larios, Leo G. Rebholz, Duygu Vargun, Camille Zerfas. Continuous data assimilation applied to a velocity-vorticity formulation of the 2D Navier-Stokes equations. Electronic Research Archive, 2021, 29 (3) : 2223-2247. doi: 10.3934/era.2020113

[6]

Alessio Falocchi, Filippo Gazzola. Regularity for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1185-1200. doi: 10.3934/dcds.2021151

[7]

Linjie Xiong. Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinetic and Related Models, 2018, 11 (3) : 469-490. doi: 10.3934/krm.2018021

[8]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[9]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[10]

Yang Liu, Chunyou Sun. Inviscid limit for the damped generalized incompressible Navier-Stokes equations on $ \mathbb{T}^2 $. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4383-4408. doi: 10.3934/dcdss.2021124

[11]

Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631

[12]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[13]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[14]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[15]

Hugo Beirão da Veiga. Navier-Stokes equations: Some questions related to the direction of the vorticity. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 203-213. doi: 10.3934/dcdss.2019014

[16]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[17]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[18]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[19]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[20]

Sandro M. Guzzo, Gabriela Planas. On a class of three dimensional Navier-Stokes equations with bounded delay. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 225-238. doi: 10.3934/dcdsb.2011.16.225

2020 Impact Factor: 1.432

Article outline

[Back to Top]