We consider kinetic vehicular traffic flow models of BGK type [
Citation: |
Figure 1. Outline of the model hierarchy. The left two columns indicate the kinetic and fluid description of traffic flow as presented in [24]. The third column refers to the diffusion coefficient $ \mu(\rho) $ to classify traffic instabilities. The green hierarchy is deterministic while the blue includes a parametric uncertainty $ \xi. $ The indicated links are established in this paper
[1] |
A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938.
doi: 10.1137/S0036139997332099.![]() ![]() ![]() |
[2] |
I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45 (2007), 1005-1034.
doi: 10.1137/050645142.![]() ![]() ![]() |
[3] |
M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035-1042.
![]() |
[4] |
N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463.
doi: 10.1137/090746677.![]() ![]() ![]() |
[5] |
P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.
![]() |
[6] |
R. Borsche and A. Klar, A nonlinear discrete velocity relaxation model for traffic flow, SIAM J. Appl. Math., 78 (2018), 2891-2917.
doi: 10.1137/17M1152681.![]() ![]() ![]() |
[7] |
R. H. Cameron and W. T. Martin, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. of Math., 48 (1947), 385-392.
doi: 10.2307/1969178.![]() ![]() ![]() |
[8] |
J. Carrillo, L. Pareschi and M. Zanella, Particle based gPC methods for mean-field models of swarming with uncertainty, Commun. Comput. Phys., 25 (2019), 508-531.
doi: 10.4208/cicp.oa-2017-0244.![]() ![]() ![]() |
[9] |
J. Carrillo and M. Zanella, Monte Carlo gPC methods for diffusive kinetic flocking models with uncertainties, Vietnam J. Math., 47 (2019), 931-954.
doi: 10.1007/s10013-019-00374-2.![]() ![]() ![]() |
[10] |
Q.-Y. Chen, D. Gottlieb and J. S. Hesthaven, Uncertainty analysis for the steady-state flows in a dual throat nozzle, J. Comput. Phys., 204 (2005), 378-398.
doi: 10.1016/j.jcp.2004.10.019.![]() ![]() ![]() |
[11] |
R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721.
doi: 10.1137/S0036139901393184.![]() ![]() ![]() |
[12] |
E. Cristiani and S. Sahu, On the micro-to-macro limit for first-order traffic flow models on networks, Netw. Heterog. Media, 11 (2016), 395-413.
doi: 10.3934/nhm.2016002.![]() ![]() ![]() |
[13] |
B. J. Debusschere, H. N. Najm, P. P. Pébay, O. M. Knio, R. G. Ghanem and O. P. L. Maître, Numerical challenges in the use of polynomial chaos representations for stochastic processes, SIAM J. Sci. Comput., 26 (2004), 698-719.
doi: 10.1137/S1064827503427741.![]() ![]() ![]() |
[14] |
B. Després, G. Poëtte and D. Lucor, Uncertainty quantification for systems of conservation laws, J. Comput. Phys., 228 (2009), 2443-2467.
doi: 10.1016/j.jcp.2008.12.018.![]() ![]() ![]() |
[15] |
M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871.
doi: 10.1007/s00205-015-0843-4.![]() ![]() ![]() |
[16] |
S. Fan, M. Herty and B. Seibold, Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model, Netw. Heterog. Media, 9 (2014), 239-268.
doi: 10.3934/nhm.2014.9.239.![]() ![]() ![]() |
[17] |
D. Gazis, R. Herman and R. Rothery, Nonlinear follow-the-leader models of traffic flow, Oper. Res., 9 (1961), 545-567.
doi: 10.1287/opre.9.4.545.![]() ![]() ![]() |
[18] |
S. Gerster and M. Herty, Entropies and symmetrization of hyperbolic stochastic Galerkin formulations, Commun. Comput. Phys., 27 (2020), 639-671.
doi: 10.4208/cicp.OA-2019-0047.![]() ![]() ![]() |
[19] |
S. Gerster, M. Herty and E. Iacomini, Stability analysis of a hyperbolic stochastic galerkin formulation for the aw-rascle-zhang model with relaxation, Math. Biosci. Eng., 18 (2021), 4372-4389.
doi: 10.3934/mbe.2021220.![]() ![]() ![]() |
[20] |
S. Gerster, M. Herty and A. Sikstel, Hyperbolic stochastic Galerkin formulation for the $p$-system, J. Comput. Phys., 395 (2019), 186-204.
doi: 10.1016/j.jcp.2019.05.049.![]() ![]() ![]() |
[21] |
D. Gottlieb and D. Xiu, Galerkin method for wave equations with uncertain coefficients, Commun. Comput. Phys., 3 (2008), 505-518.
![]() ![]() |
[22] |
M. Herty and R. Illner, Analytical and numerical investigations of refined macroscopic traffic flow models, Kinet. Relat. Models, 3 (2010), 311-333.
doi: 10.3934/krm.2010.3.311.![]() ![]() ![]() |
[23] |
M. Herty and L. Pareschi, Fokker-Planck asymptotics for traffic flow models, Kinet. Relat. Models, 3 (2010), 165-179.
doi: 10.3934/krm.2010.3.165.![]() ![]() ![]() |
[24] |
M. Herty, G. Puppo, S. Roncoroni and G. Visconti, The BGK approximation of kinetic models for traffic, Kinet. Relat. Models, 13 (2020), 279-307.
doi: 10.3934/krm.2020010.![]() ![]() ![]() |
[25] |
H. Holden and N. H. Risebro, The continuum limit of Follow-the-Leader models—a short proof, Discrete Contin. Dyn. Syst., 38 (2018), 715-722.
doi: 10.3934/dcds.2018031.![]() ![]() ![]() |
[26] |
J. Hu and S. Jin, A stochastic Galerkin method for the Boltzmann equation with uncertainty, J. Comput. Phys., 315 (2016), 150-168.
doi: 10.1016/j.jcp.2016.03.047.![]() ![]() ![]() |
[27] |
S. Jin and Y. Zhu, Hypocoercivity and uniform regularity for the Vlasov-Poisson-Fokker-Planck system with uncertainty and multiple scales, SIAM J. Math. Anal., 50 (2018), 1790-1816.
doi: 10.1137/17M1123845.![]() ![]() ![]() |
[28] |
A. Klar and R. Wegener, A kinetic model for vehicular traffic derived from a stochastic microscopic model, Transport. Theor. Stat., 25 (1996), 785-798.
![]() |
[29] |
A. Klar and R. Wegener, Enskog-like kinetic models for vehicular traffic, J. Stat. Phys., 87 (1997), 91-114.
doi: 10.1007/BF02181481.![]() ![]() ![]() |
[30] |
J. Kusch, G. Alldredge and M. Frank, Maximum-principle-satisfying second-order intrusive polynomial moment scheme, SMAI J. Comput. Math., 5 (2019), 23-51.
doi: 10.5802/smai-jcm.42.![]() ![]() ![]() |
[31] |
O. P. Le Maître and O. M. Knio, Spectral Methods for Uncertainty Quantification, Springer, New York, 2010.
doi: 10.1007/978-90-481-3520-2.![]() ![]() ![]() |
[32] |
P. L'Ecuyer and C. Lemieux, Recent advances in randomized quasi-monte carlo methods, Internat. Ser. Oper. Res. Management Sci., 46 (2002), 419-474.
doi: 10.1007/0-306-48102-2_20.![]() ![]() ![]() |
[33] |
M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089.![]() ![]() ![]() |
[34] |
O. P. L. Maître and O. M. Knio, Spectral Methods for Uncertainty Quantification, Springer Netherlands, 1 ed., 2010.
doi: 10.1007/978-90-481-3520-2.![]() ![]() ![]() |
[35] |
P. Pettersson, G. Iaccarino and J. Nordström, A stochastic Galerkin method for the Euler equations with Roe variable transformation, J. Comput. Phys., 257 (2014), 481-500.
doi: 10.1016/j.jcp.2013.10.011.![]() ![]() ![]() |
[36] |
P. Pettersson, G. Iaccarino and J. Nordström, Polynomial Chaos Methods for Hyperbolic Partial Differential Equations, Numerical techniques for fluid dynamics problems in the presence of uncertainties. Mathematical Engineering. Springer, Cham, 2015.
doi: 10.1007/978-3-319-10714-1.![]() ![]() ![]() |
[37] |
R. Pulch and D. Xiu, Generalised polynomial chaos for a class of linear conservation laws, J. Sci. Comput., 51 (2012), 293-312.
doi: 10.1007/s10915-011-9511-5.![]() ![]() ![]() |
[38] |
G. Puppo, M. Semplice, A. Tosin and G. Visconti, Kinetic models for traffic flow resulting in a reduced space of microscopic velocities, Kinet. Relat. Mod., 10 (2017), 823-854.
doi: 10.3934/krm.2017033.![]() ![]() ![]() |
[39] |
B. Seibold, M. R. Flynn, A. R. Kasimov and R. R. Rosales, Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models, Netw. Heterog. Media, 8 (2013), 745-772.
doi: 10.3934/nhm.2013.8.745.![]() ![]() ![]() |
[40] |
R. Shu, J. Hu and S. Jin, A stochastic Galerkin method for the Boltzmann equation with multi-dimensional random inputs using sparse wavelet bases, Numer. Math. Theory Methods Appl., 10 (2017), 465-488.
doi: 10.4208/nmtma.2017.s12.![]() ![]() ![]() |
[41] |
T. J. Sullivan, Introduction to Uncertainty Quantification, Texts in Applied Mathematics, 63. Springer, Cham, 2015.
doi: 10.1007/978-3-319-23395-6.![]() ![]() ![]() |
[42] |
K. Taimre, Botev, Handbook of Monte Carlo Methods, John Wiley and Sons, 2011.
![]() |
[43] |
A. Tosin and M. Zanella, Boltzmann-type models with uncertain binary interactions, Commun. Math. Sci., 16 (2018), 963-985.
doi: 10.4310/CMS.2018.v16.n4.a3.![]() ![]() ![]() |
[44] |
A. Tosin and M. Zanella, Uncertainty damping in kinetic traffic models by driver-assist controls, Math. Control Relat. Fields, 11 (2021), 681-713.
doi: 10.3934/mcrf.2021018.![]() ![]() ![]() |
[45] |
N. Wiener, The homogeneous chaos, Amer. J. Math., 60 (1938), 897-936.
doi: 10.2307/2371268.![]() ![]() ![]() |
[46] |
D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, Princeton, N.J, 2010.
![]() ![]() |
[47] |
D. Xiu and G. E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24 (2002), 619-644.
doi: 10.1137/S1064827501387826.![]() ![]() ![]() |
[48] |
M. Zanella, Structure preserving stochastic Galerkin methods for Fokker-Planck equations with background interactions, Math. Comput. Simulation, 168 (2020), 28-47.
doi: 10.1016/j.matcom.2019.07.012.![]() ![]() ![]() |
[49] |
H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transport. Res. B-Meth., 36 (2002), 275-290.
![]() |
[50] |
Y. Zhu and S. Jin, The Vlasov-Poisson-Fokker-Planck system with uncertainty and a one-dimensional asymptotic preserving method, Multiscale Model. Simul., 15 (2017), 1502-1529.
doi: 10.1137/16M1090028.![]() ![]() ![]() |
Outline of the model hierarchy. The left two columns indicate the kinetic and fluid description of traffic flow as presented in [24]. The third column refers to the diffusion coefficient
Probability (53) for a Maxwellian
Probability (53) for different velocities samples:
Probability (53) for different hesitation functions:
Mean and variance of the density at
Probability (53) at time
Probability of negative diffusion coefficient in a rarefaction case at different time:
Density profile and probability of negative diffusion coefficient in a shock case at