- Previous Article
- KRM Home
- This Issue
-
Next Article
On time decay for the spherically symmetric Vlasov-Poisson system
Instantaneous smoothing and exponential decay of solutions for a degenerate evolution equation with application to Boltzmann's equation
1. | Kent State University, Kent, OH 44240 |
2. | Indiana University, Bloomington, IN 47405 |
We establish an instantaneous smoothing property for decaying solutions on the half-line $ (0, +\infty) $ of certain degenerate Hilbert space-valued evolution equations arising in kinetic theory, including in particular the steady Boltzmann equation. Our results answer the two main open problems posed by Pogan and Zumbrun in their treatment of $ H^1 $ stable manifolds of such equations, showing that $ L^2_{loc} $ solutions that remain sufficiently small in $ L^\infty $ (i) decay exponentially, and (ii) are $ C^\infty $ for $ t>0 $, hence lie eventually in the $ H^1 $ stable manifold constructed by Pogan and Zumbrun.
References:
[1] |
G. Boillat and T. Ruggeri,
On the shock structure problem for hyperbolic system of balance laws and convex entropy, Contin. Mech. Thermodyn., 10 (1998), 285-292.
doi: 10.1007/s001610050094. |
[2] |
J. B. Conway, A Course in Functional Analysis, 2nd edition, Graduate Texts in Mathematics, 96. Springer-Verlag, New York, 1990. |
[3] |
J. Diestel and J. J. Uhl, Vector Measures, Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I., 1977. |
[4] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[5] |
Y. Latushkin and A. Pogan,
The dichotomy theorem for evolution bi-families, J. Diff. Eq., 245 (2008), 2267-2306.
doi: 10.1016/j.jde.2008.01.023. |
[6] |
G. Métivier and K. Zumbrun,
Existence and sharp localization in velocity of small-amplitude Boltzmann shocks, Kinet. Relat. Models, 2 (2009), 667-705.
doi: 10.3934/krm.2009.2.667. |
[7] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[8] |
A. Pogan and K. Zumbrun,
Stable manifolds for a class of singular evolution equations and exponential decay of kinetic shocks,, Kinet. Relat. Models, 12 (2019), 1-36.
doi: 10.3934/krm.2019001. |
[9] |
A. Pogan and K. Zumbrun,
Center manifolds for a class of degenerate evolution equations and existence of small-amplitude kinetic shocks,, J. Diff. Eq., 264 (2018), 6752-6808.
doi: 10.1016/j.jde.2018.01.049. |
[10] |
M. Reed and B. Simon, Methods of Mathematical Physics, 2 edition, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.
![]() ![]() |
[11] |
W. Rudin, Functional Analysis, 2nd edition, International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991. |
[12] |
K. Zumbrun,
Invariant manifolds for a class of degenerate evolution equations and structure of kinetic shock layers,, Springer Proc. Math. Stat., 237 (2018), 691-714.
|
show all references
References:
[1] |
G. Boillat and T. Ruggeri,
On the shock structure problem for hyperbolic system of balance laws and convex entropy, Contin. Mech. Thermodyn., 10 (1998), 285-292.
doi: 10.1007/s001610050094. |
[2] |
J. B. Conway, A Course in Functional Analysis, 2nd edition, Graduate Texts in Mathematics, 96. Springer-Verlag, New York, 1990. |
[3] |
J. Diestel and J. J. Uhl, Vector Measures, Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I., 1977. |
[4] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[5] |
Y. Latushkin and A. Pogan,
The dichotomy theorem for evolution bi-families, J. Diff. Eq., 245 (2008), 2267-2306.
doi: 10.1016/j.jde.2008.01.023. |
[6] |
G. Métivier and K. Zumbrun,
Existence and sharp localization in velocity of small-amplitude Boltzmann shocks, Kinet. Relat. Models, 2 (2009), 667-705.
doi: 10.3934/krm.2009.2.667. |
[7] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[8] |
A. Pogan and K. Zumbrun,
Stable manifolds for a class of singular evolution equations and exponential decay of kinetic shocks,, Kinet. Relat. Models, 12 (2019), 1-36.
doi: 10.3934/krm.2019001. |
[9] |
A. Pogan and K. Zumbrun,
Center manifolds for a class of degenerate evolution equations and existence of small-amplitude kinetic shocks,, J. Diff. Eq., 264 (2018), 6752-6808.
doi: 10.1016/j.jde.2018.01.049. |
[10] |
M. Reed and B. Simon, Methods of Mathematical Physics, 2 edition, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.
![]() ![]() |
[11] |
W. Rudin, Functional Analysis, 2nd edition, International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991. |
[12] |
K. Zumbrun,
Invariant manifolds for a class of degenerate evolution equations and structure of kinetic shock layers,, Springer Proc. Math. Stat., 237 (2018), 691-714.
|
[1] |
Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control and Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61 |
[2] |
Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431 |
[3] |
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 |
[4] |
Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145 |
[5] |
Yuki Kaneko, Hiroshi Matsuzawa, Yoshio Yamada. A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions I : Classification of asymptotic behavior. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2719-2745. doi: 10.3934/dcds.2021209 |
[6] |
Kevin Zumbrun. L∞ resolvent bounds for steady Boltzmann's Equation. Kinetic and Related Models, 2017, 10 (4) : 1255-1257. doi: 10.3934/krm.2017048 |
[7] |
Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319 |
[8] |
Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861 |
[9] |
Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441 |
[10] |
Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019 |
[11] |
Haoyue Cui, Dongyi Liu, Genqi Xu. Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback. Mathematical Control and Related Fields, 2018, 8 (2) : 383-395. doi: 10.3934/mcrf.2018015 |
[12] |
Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709 |
[13] |
Jun Zhou. Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28 (1) : 67-90. doi: 10.3934/era.2020005 |
[14] |
Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 157-164. doi: 10.3934/naco.2019045 |
[15] |
Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319 |
[16] |
Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations and Control Theory, 2022, 11 (3) : 635-648. doi: 10.3934/eect.2021019 |
[17] |
Yan Yong, Weiyuan Zou. Macroscopic regularity for the relativistic Boltzmann equation with initial singularities. Kinetic and Related Models, 2019, 12 (5) : 945-967. doi: 10.3934/krm.2019036 |
[18] |
Thomas Chen, Ryan Denlinger, Nataša Pavlović. Moments and regularity for a Boltzmann equation via Wigner transform. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 4979-5015. doi: 10.3934/dcds.2019204 |
[19] |
Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011 |
[20] |
N. I. Karachalios, Hector E. Nistazakis, Athanasios N. Yannacopoulos. Asymptotic behavior of solutions of complex discrete evolution equations: The discrete Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 711-736. doi: 10.3934/dcds.2007.19.711 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]