• Previous Article
    Local conditional regularity for the Landau equation with Coulomb potential
  • KRM Home
  • This Issue
  • Next Article
    Thermalization of a rarefied gas with total energy conservation: Existence, hypocoercivity, macroscopic limit
doi: 10.3934/krm.2022013
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Erratum to: On the entropic property of the ellipsoidal statistical model with the Prandtl number below 2/3

1. 

Department of Aeronautics and Astronautics & Advanced Engineering Research Center, Kyoto University, Kyoto 615-8540, Japan

2. 

Department of Aeronautics and Astronautics, Kyoto University, Kyoto 615-8540, Japan

*Corresponding author: Shigeru Takata

Received  January 2022 Early access April 2022

Citation: Shigeru Takata, Masanari Hattori, Takumu Miyauchi. Erratum to: On the entropic property of the ellipsoidal statistical model with the Prandtl number below 2/3. Kinetic and Related Models, doi: 10.3934/krm.2022013
Figure 4.  The function $ \epsilon_P $ and the dimensionless density $ \hat{\rho} $ in the range $ 0<\hat{U}<5 $. (a) $ \epsilon_P $, (b) $ \hat{\rho} $. In (a), the values of $ \mathcal{S}(\mathrm{Pr}) $ for $ (3/2)\mathrm{Pr} = 0.76, 0.8, 0.84, \dots, 0.96 $ are also indicated by dash-dotted lines for reference
[1]

Shigeru Takata, Masanari Hattori, Takumu Miyauchi. On the entropic property of the Ellipsoidal Statistical model with the prandtl number below 2/3. Kinetic and Related Models, 2020, 13 (6) : 1163-1174. doi: 10.3934/krm.2020041

[2]

Lei Jing, Jiawei Sun. Global existence and long time behavior of the Ellipsoidal-Statistical-Fokker-Planck model for diatomic gases. Kinetic and Related Models, 2020, 13 (2) : 373-400. doi: 10.3934/krm.2020013

[3]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic and Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[4]

Anne Bronzi, Ricardo Rosa. On the convergence of statistical solutions of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ vanishes. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 19-49. doi: 10.3934/dcds.2014.34.19

[5]

Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Erratum. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 219-220. doi: 10.3934/dcds.2007.18.219

[6]

Freddy Dumortier, Robert Roussarie. Erratum. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 816-816. doi: 10.3934/dcds.2008.22.816

[7]

M. R. Hassan. Erratum. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2277-2277. doi: 10.3934/jimo.2021064

[8]

François Genoud. Erratum. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 1119-1120. doi: 10.3934/dcds.2010.26.1119

[9]

Bernhard Kawohl. Erratum. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 690-690. doi: 10.3934/dcds.2007.17.690

[10]

Inwon C. Kim. Erratum. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 375-377. doi: 10.3934/dcds.2011.30.375

[11]

Antoine Gloria Cermics. Erratum. Networks and Heterogeneous Media, 2006, 1 (3) : 513-514. doi: 10.3934/nhm.2006.1.513

[12]

John B. Little. Erratum. Advances in Mathematics of Communications, 2008, 2 (3) : 344-345. doi: 10.3934/amc.2008.2.344

[13]

Urszula Ledzewicz, Andrzej Swierniak. ERRATUM. Mathematical Biosciences & Engineering, 2005, 2 (3) : 671-671. doi: 10.3934/mbe.2005.2.671

[14]

Richard A. Brualdi, Kathleen P. Kiernan, Seth A. Meyer, Michael W. Schroeder. Erratum. Advances in Mathematics of Communications, 2010, 4 (4) : 597-597. doi: 10.3934/amc.2010.4.597

[15]

David Auger, Irène Charon, Iiro Honkala, Olivier Hudry, Antoine Lobstein. Erratum. Advances in Mathematics of Communications, 2009, 3 (4) : 429-430. doi: 10.3934/amc.2009.3.429

[16]

Rana D. Parshad. Asymptotic behaviour of the Darcy-Boussinesq system at large Darcy-Prandtl number. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1441-1469. doi: 10.3934/dcds.2010.26.1441

[17]

Jungho Park. Dynamic bifurcation theory of Rayleigh-Bénard convection with infinite Prandtl number. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 591-604. doi: 10.3934/dcdsb.2006.6.591

[18]

Jingrui Su. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3423-3434. doi: 10.3934/dcds.2017145

[19]

Sijia Zhong, Daoyuan Fang. $L^2$-concentration phenomenon for Zakharov system below energy norm II. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1117-1132. doi: 10.3934/cpaa.2009.8.1117

[20]

Rohit Kumar, V.V.M.S. Chandramouli. Period tripling and quintupling renormalizations below $ C^2 $ space. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5633-5658. doi: 10.3934/dcds.2021091

2021 Impact Factor: 1.398

Article outline

Figures and Tables

[Back to Top]