\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Green's function and pointwise behaviors of the one-dimensional modified Vlasov-Poisson-Boltzmann system

  • *Corresponding author: Mingying Zhong

    *Corresponding author: Mingying Zhong

The authors are supported by the National Science Fund for Excellent Young Scholars No. 11922107, the National Natural Science Foundation of China grants No. 12171104, and Guangxi Natural Science Foundation No. 2019JJG110010

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The pointwise space-time behaviors of the Green's function and the global solution to the modified Vlasov-Poisson-Boltzmann (mVPB) system in one-dimensional space are studied in this paper. It is shown that, the Green's function admits the diffusion wave, the Huygens's type sound wave, the singular kinetic wave and the remainder term decaying exponentially in space-time. These behaviors are similar to the Boltzmann equation (Liu and Yu in Comm. Pure Appl. Math. 57: 1543-1608, 2004). Furthermore, we establish the pointwise space-time nonlinear diffusive behaviors of the global solution to the nonlinear mVPB system in terms of the Green's function.

    Mathematics Subject Classification: Primary: 76P05, 82C40; Secondary: 82D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, vol. 106, Springer, New York, 1994. doi: 10.1007/978-1-4419-8524-8.
    [2] S. Codier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Commun. Part. Diff. Eq., 25 (2000), 1099-1113.  doi: 10.1080/03605300008821542.
    [3] R.-J. Duan and S. Liu, Stability of the rarefaction wave of the Vlasov-Poisson-Boltzmann system, SIAM J. Math. Anal., 47 (2015), 3585-3647.  doi: 10.1137/140995179.
    [4] R.-J. Duan and R.-M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbb{R}^{3}$, Arch. Ration. Mech. Anal., 199 (2011), 291-328.  doi: 10.1007/s00205-010-0318-6.
    [5] R.-J. Duan and T. Yang, Stability of the one-species Vlasov-Poisson-Boltzmann system, SIAM J. Math. Anal., 41 (2010), 2353-2387.  doi: 10.1137/090745775.
    [6] R.-J. DuanT. Yang and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Differ. Equ., 252 (2012), 6356-6386.  doi: 10.1016/j.jde.2012.03.012.
    [7] R.-J. DuanT. Yang and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system for soft potentials, Math. Models Appl. Sci., 23 (2013), 979-1028.  doi: 10.1142/S0218202513500012.
    [8] R.-T. Glassey, The Cauchy problem in Kinetic Theory, SIAM, Philadephia, PA, 1996. doi: 10.1137/1.9781611971477.
    [9] Y. Guo, The Vlasov-Poisson-Boltzmann system near vacuum, Comm. Math. Phys., 218 (2001), 293-313.  doi: 10.1007/s002200100391.
    [10] Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135.  doi: 10.1002/cpa.10040.
    [11] L. Kaup and B. Kaup, Holomorphic Functions of Several Variables: An Introduction to the Fundamental Theory, De Gruyter Studies in Mathematics, 3. Walter de Gruyter & Co., Berlin, 1983. doi: 10.1515/9783110838350.
    [12] H.-L. LiY. WangT. Yang and M. Zhong, Stability of nonlinear wave patterns to the bipolar Vlasov-Poisson-Boltzmann system, Arch. Rational Mech. Anal., 228 (2018), 39-127.  doi: 10.1007/s00205-017-1185-1.
    [13] H.-L. LiT. Yang and Y. Wang, Stability of the superposition of a viscous contact wave with two rarefaction waves to the bipolar Vlasov-Poisson-Boltzmann system, SIAM J. Math. Anal., 228 (2018), 39-127.  doi: 10.1007/s00205-017-1185-1.
    [14] H.-L. LiT. Yang and M. Zhong, Spectrum analysis for the Vlasov-Poisson-Boltzmann system, Arch. Rational Mech. Anal., 241 (2021), 311-355.  doi: 10.1007/s00205-021-01652-5.
    [15] H.-L. LiT. Yang and M. Zhong, Spectrum analysis and optimal decay rates of the bipolar Vlasov-Poisson-Boltzmann equations, Indiana Univ. Math. J., 65 (2016), 665-725.  doi: 10.1512/iumj.2016.65.5730.
    [16] H.-L. LiT. Yang and M. Zhong, Green's function and pointwise Space-time behaviors of the Vlasov-Poisson-Boltzmann system, Arch. Rational Mech. Anal., 235 (2020), 1011-1057.  doi: 10.1007/s00205-019-01438-w.
    [17] H.-L. Li, T. Yang and M. Zhong, Green's function and pointwise behavior of the one-dimensional Vlasov-Maxwell-Boltzmann system, preprint, (2022), arXiv: 2207.01776.
    [18] P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, J. Math. Kyoto Univ., 34 (1994), 391-427,429-461. doi: 10.1215/kjm/1250519017.
    [19] P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications. III, J. Math. Kyoto Univ., 34 (1994), 539-584.  doi: 10.1215/kjm/1250518932.
    [20] T.-P. Liu and S.-H. Yu, The Green's function and large-time behavior of solutions for the one-dimensional Boltzmann equation, Comm. Pure Appl. Math., 57 (2004), 1543-1608.  doi: 10.1002/cpa.20011.
    [21] T.-P. Liu and S.-H. Yu, The Green's function of Boltzmann equation, 3D waves, Bull. Inst. Math. Acad. Sin. (N.S.), 1 (2006), 1-78. 
    [22] P.-A. Markowich, C.-A. Ringhofer and C.-S. Chmeiser, Semiconductor Equations, Spring-Verlag Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.
    [23] S. Mischler, On the initial boundary value problem for the Vlasov-Poisson-Boltzmann System, Math. Phys., 210 (2000), 447-466.  doi: 10.1007/s002200050787.
    [24] S. Ukai and Y. Tong, Mathematical Theory of Boltzmann Equation, Lecture Notes series-No.8, Hong Kang: Liu Bie Ju Center for Mathematical Sciences, City University of Hong Kong, 2006.
    [25] T. Yang and H.-J. Yu, Optimal convergence rates of classical solutions for Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 301 (2011), 319-355.  doi: 10.1007/s00220-010-1142-4.
    [26] T. Yang, H.-J. Yu and H.-J. Zhao, Cauchy problem for the Vlasov-Poisson-Boltzmann system, Arch. Rational Mech. Anal., 182 (2006), 415-470. doi: 10.1007/s00205-006-0009-5.
    [27] T. Yang and H.-J. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268 (2006), 569-605.  doi: 10.1007/s00220-006-0103-4.
  • 加载中
SHARE

Article Metrics

HTML views(1925) PDF downloads(184) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return