In the manuscript, we are interested in using kinetic theory to better understand the time evolution of wealth distribution and their large scale behavior such as the evolution of inequality (e.g. Gini index). We investigate three types of dynamics denoted unbiased, poor-biased and rich-biased exchange models. At the individual level, one agent is picked randomly based on its wealth and one of its dollars is redistributed among the population. Proving the so-called propagation of chaos, we identify the limit of each dynamics as the number of individuals approaches infinity using both coupling techniques [
Citation: |
Figure 2. Left: Distribution of wealth for the three dynamics after $ 50,000 $ steps. The distribution decays for the unbiased dynamics (pink) i.e. poor agents are more frequent than rich agents, whereas in the poor-biased dynamics, the distribution (blue) is centered at the average $ $ 10 $. For the rich-biased dynamics, almost all agents have zero dollars except a few with a large amount (more than $ $ 30 $). Right: evolution of the Gini index (5) for the three dynamics. The Gini index is lower for the poor-biased dynamics (less inequality) whereas it is approaching $ 1 $ for the rich-biased dynamics
Figure 3. Schematic illustration of the strategy of proof: The approach of sending $ t\to \infty $ first and then taking $ N \to \infty $ is carried out in [39]. Our strategy is to perform the limit $ N \to \infty $ before investigating the time asymptotic $ t\to \infty $
Figure 6. The clocks $ \mathrm{N}_t^{(i, j)} $ used to generate the unbiased dynamics (11) have to be modified to generate the limit dynamics $ (\mkern 1.5mu\overline{\mkern-1.5mu{S}\mkern-1.5mu}\mkern 1.5mu_1(t), \ldots, \mkern 1.5mu\overline{\mkern-1.5mu{S}\mkern-1.5mu}\mkern 1.5mu_k(t)) $ (14). The processes $ \mkern 1.5mu\overline{\mkern-1.5mu{S}\mkern-1.5mu}\mkern 1.5mu_i(t) $ and $ \mkern 1.5mu\overline{\mkern-1.5mu{S}\mkern-1.5mu}\mkern 1.5mu_j(t) $ have to be independent, thus the clocks $ \mathrm{N}_t^{(i, j)} $ for $ 1\leq i, j \leq k $ cannot be used
Figure 7. Left: comparison between the numerical solution $ {\bf p}(t) $ (36) of the poor-bias model and the equilibrium $ {\bf p}^* $ (48). The two distributions are indistinguishable. Right: decay of the difference $ \|{\bf p}(t)-{\bf p}^*\|_{\mathcal H^0} $ in semilog scale. The decay is exponential as predicted by the theorem 4.5
Figure 8. Evolution of the wealth distribution $ {\bf p}(t) $ for the rich-biased dynamics (71). The distribution spreads in two parts: a large proportion starts to concentrate at zero ("poor distribution") and while the other part forms a dispersive traveling wave. Parameters: $ \Delta t = 5\cdot10^{-3} $, $ {\bf p}(t)\approx (p_0(t), p_1(t), \dots, p_{1,000}(t)) $. A standard Runge-Kutta of order $ 4 $ has been used to discretize the system
Figure 9. Left: Estimation of the center $ c(t) $ and standard deviation $ \sigma(t) $ of the dispersive wave along with their parametric (power-law) estimation (91). Right: Comparison of the distribution $ {\bf p}(t) $ (see Figure 8) with the dispersive wave using the standard normal distribution $ \phi $
[1] | D. Aldous, Random walks on finite groups and rapidly mixing Markov chains, Seminar on Probability, XVII, Lecture Notes in Math., Springer, 986 (1983), 243-297. doi: 10.1007/BFb0068322. |
[2] | D. Aldous and P. Diaconis, Shuffling cards and stopping times, The American Mathematical Monthly, 93 (1986), 333-348. doi: 10.1080/00029890.1986.11971821. |
[3] | A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43-100. doi: 10.1081/PDE-100002246. |
[4] | D. Bakry and M. Émery, Diffusions hypercontractives, Séminaire de Probabilités XIX 1983/84, Lecture Notes in Math., Springer, Berlin, 1123 (1985), 177-206. doi: 10.1007/BFb0075847. |
[5] | A. B. T. Barbaro and P. Degond, Phase transition and diffusion among socially interacting self-propelled agents, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1249-1278. doi: 10.3934/dcdsb.2014.19.1249. |
[6] | P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. |
[7] | B. M. Boghosian, A. Devitt-Lee, M. Johnson, J. Li, J. A. Marcq and H. Wang, Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker-Planck description of asset exchange, Phys. A, 476 (2017), 15-37. doi: 10.1016/j.physa.2017.01.071. |
[8] | B. M. Boghosian, M. Johnson and J. A. Marcq, An $H$ theorem for Boltzmann's equation for the Yard-Sale Model of asset exchange, Journal of Statistical Physics, 161 (2015), 1339-1350. doi: 10.1007/s10955-015-1316-8. |
[9] | S. Boucheron, G. Lugosi and P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence, Oxford University Press, 2013. doi: 10.1093/acprof:oso/9780199535255.001.0001. |
[10] | H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. |
[11] | M. Bukal, A. Jüngel and D. Matthes, Entropies for radially symmetric higher-order nonlinear diffusion equations, Communications in Mathematical Sciences, 9 (2011), 353-382. doi: 10.4310/CMS.2011.v9.n2.a2. |
[12] | F. Cao, Explicit decay rate for the Gini index in the repeated averaging model, arXiv preprint, (2021), arXiv: 2108.07904. doi: 10.1002/mma.8711. |
[13] | F. Cao and P.-E. Jabin, From interacting agents to Boltzmann-Gibbs distribution of money, arXiv preprint, (2022), arXiv: 2208.05629. |
[14] | F. Cao, P.-E. Jabin and S. Motsch, Entropy dissipation and propagation of chaos for the uniform reshuffling model, arXiv preprint, (2021), arXiv: 2104.01302. doi: 10.1142/S0218202523500185. |
[15] | F. Cao and N. F. Marshall, From the binomial reshuffling model to Poisson distribution of money, arXiv preprint, (2022), arXiv: 2212.14388. |
[16] | F. Cao and S. Motsch, Uncovering a two-phase dynamics from a dollar exchange model with bank and debt, arXiv preprint, (2022), arXiv: 2208.11003. |
[17] | E. Carlen, R. Chatelin, P. Degond and B. Wennberg, Kinetic hierarchy and propagation of chaos in biological swarm models, Physica D: Nonlinear Phenomena, 260 (2013), 90-111. doi: 10.1016/j.physd.2012.05.013. |
[18] | E. Carlen, P. Degond and B. Wennberg, Kinetic limits for pair-interaction driven master equations and biological swarm models, Mathematical Models and Methods in Applied Sciences, 23 (2013), 1339-1376. doi: 10.1142/S0218202513500115. |
[19] | A. Chakraborti and B. K. Chakrabarti, Statistical mechanics of money: How saving propensity affects its distribution, The European Physical Journal B-Condensed Matter and Complex Systems, 17 (2000), 167-170. doi: 10.1007/s100510070173. |
[20] | A. Chakraborti, I. M. Toke, M. Patriarca and F. Abergel, Econophysics review: I. Empirical facts, Quantitative Finance, 11 (2011), 991-1012. doi: 10.1080/14697688.2010.539248. |
[21] | A. Chakraborti, I. M. Toke, M. Patriarca and F. Abergel, Econophysics review: II. Agent-based models, Quantitative Finance, 11 (2011), 1013-1041. doi: 10.1080/14697688.2010.539249. |
[22] | A. Chatterjee, B. K. Chakrabarti and S. S. Manna, Pareto law in a kinetic model of market with random saving propensity, Physica A: Statistical Mechanics and its Applications, 335 (2004), 155-163. doi: 10.1016/j.physa.2003.11.014. |
[23] | A. Chatterjee, S. Yarlagadda and B. K. Chakrabarti, Econophysics of Wealth Distributions: Econophys-Kolkata I, Springer Science & Business Media, 2007. |
[24] | R. Cortez and F. Cao, Uniform propagation of chaos for a dollar exchange econophysics model, arXiv preprint, (2022), arXiv: 2212.08289. |
[25] | T. M. Cover, Elements of Information Theory, John Wiley & Sons, 1999. |
[26] | I. Csiszár and P. C. Shields, Information theory and statistics: A tutorial, Foundations and Trends® in Communications and Information Theory, 1 (2004), 417-528. |
[27] | E. Dabla-Norris, K. Kochhar, N. Suphaphiphat, F. Ricka and E. Tsounta, Causes and Consequences of Income Inequality: A Global Perspective, International Monetary Fund, 2015. |
[28] | E. J. de Area Leão Pereira, M. F. da Silva and H. B. B. Pereira, Econophysics: Past and present, Physica A: Statistical Mechanics and its Applications, 473 (2017), 251-261. doi: 10.1016/j.physa.2017.01.007. |
[29] | J. De Haan and J.-E. Sturm, Finance and income inequality: A review and new evidence, European Journal of Political Economy, 50 (2017), 171-195. |
[30] | E. J. de Area Leão Pereira, M. F. da Silva and H. B. B. Pereira, Econophysics: Past and present, Physica A: Statistical Mechanics and its Applications, 473 (2017), 251-261. doi: 10.1016/j.physa.2017.01.007. |
[31] | F. den Hollander, Probability theory: The coupling method, http://websites.math.leidenuniv.nl/probability/lecturenotes/CouplingLectures.pdf, (2012). |
[32] | P. Diaconis, The cutoff phenomenon in finite Markov chains, Proceedings of the National Academy of Sciences, 93 (1996), 1659-1664. doi: 10.1073/pnas.93.4.1659. |
[33] | A. Dragulescu and V. M. Yakovenko, Statistical mechanics of money, The European Physical Journal B-Condensed Matter and Complex Systems, 17 (2000), 723-729. doi: 10.1007/s100510070114. |
[34] | B. T. Graham, Rate of relaxation for a mean-field zero-range process, The Annals of Applied Probability, 19 (2009), 497-520. doi: 10.1214/08-AAP549. |
[35] | E. Heinsalu and M. Patriarca, Kinetic models of immediate exchange, The European Physical Journal B, 87 (2014), Art. 170, 10 pp. doi: 10.1140/epjb/e2014-50270-6. |
[36] | A. Jüngel, Entropy Methods for Diffusive Partial Differential Equations, SpringerBriefs in Mathematics, Springer, [Cham], 2016. doi: 10.1007/978-3-319-34219-1. |
[37] | A. Jüngel and D. Matthes, An algorithmic construction of entropies in higher-order nonlinear PDEs, Nonlinearity, 19 (2006), 633-659. doi: 10.1088/0951-7715/19/3/006. |
[38] | R. Kutner, M. Ausloos, D. Grech, T. Di Matteo, C. Schinckus and H. E. Stanley, Econophysics and sociophysics: Their milestones & challenges, Physica A: Statistical Mechanics and its Applications, 516 (2019), 240-253. doi: 10.1016/j.physa.2018.10.019. |
[39] | N. Lanchier, Rigorous proof of the Boltzmann-Gibbs distribution of money on connected graphs, Journal of Statistical Physics, 167 (2017), 160-172. doi: 10.1007/s10955-017-1744-8. |
[40] | N. Lanchier and S. Reed, Rigorous results for the distribution of money on connected graphs, Journal of Statistical Physics, 171 (2018), 727-743. doi: 10.1007/s10955-018-2024-y. |
[41] | N. Lanchier and S. Reed, Rigorous results for the distribution of money on connected graphs (models with debts), Journal of Statistical Physics, (2018), 1-23. |
[42] | D. Matthes, Entropy methods and related functional inequalities. Lecture Notes, Pavia, Italy, (2007), http://www-m8.ma.tum.de/personen/matthes/papers/lecpavia.pdf. |
[43] | D. Matthes, A. Jüngel and G. Toscani, Convex Sobolev inequalities derived from entropy dissipation, Archive for Rational Mechanics and Analysis, 199 (2011), 563-596. doi: 10.1007/s00205-010-0331-9. |
[44] | S. Méléard and S. Roelly-Coppoletta, A propagation of chaos result for a system of particles with moderate interaction, Stochastic Processes and Their Applications, 26 (1987), 317-332. doi: 10.1016/0304-4149(87)90184-0. |
[45] | M. Merle and J. Salez, Cutoff for the mean-field zero-range process, Annals of Probability, 47 (2019), 3170-3201. doi: 10.1214/19-AOP1336. |
[46] | G. Naldi, L. Pareschi and G. Toscani, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Springer Science & Business Media, 2010. doi: 10.1007/978-0-8176-4946-3. |
[47] | K. Oelschlager, A martingale approach to the law of large numbers for weakly interacting stochastic processes, The Annals of Probability, 12 (1984), 458-479. |
[48] | B. Oksendal, Stochastic Differential Equations: An Introduction with Applications, Springer Science & Business Media, 2013. |
[49] | L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7. Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4684-0249-0. |
[50] | N. Privault, Stochastic Finance: An Introduction with Market Examples, Chapman & Hall/CRC Financial Mathematics Series, CRC Press, Boca Raton, FL, 2014. |
[51] | H. Risken, Fokker-Planck Equation. Methods of Solution and Applications, Springer Series in Synergetics, 18. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-96807-5. |
[52] | G. Sǎvoiu, Econophysics: Background and Applications in Economics, Finance, and Sociophysics, Elsevier/Academic Press, Amsterdam, 2013. doi: 10.1016/c2012-0-02286-7. |
[53] | S. E. Shreve, Stochastic Calculus for Finance. II. Continuous-Time Models, Springer Finance, Springer-Verlag, New York, 2004. |
[54] | F. Spitzer, Interaction of Markov processes, Random Walks, Brownian Motion, and Interacting Particle Systems, (1991), 66-110. |
[55] | A.-S. Sznitman, Topics in propagation of chaos, Ecole d'été de Probabilités de Saint-Flour XIX-1989, Lecture Notes in Math., Springer, Berlin, 1464 (1991), 165-251. doi: 10.1007/BFb0085169. |
Left: Illustration of the
Left: Distribution of wealth for the three dynamics after
Schematic illustration of the strategy of proof: The approach of sending
Summary of the limit ODE systems obtained in this manuscript. The exact form of the operator
Schematic illustration of the coupling strategy. We use an intermediate process
The clocks
Left: comparison between the numerical solution
Evolution of the wealth distribution
Left: Estimation of the center
Left: Evolution of the corresponding Gini index (93) along with the analytical approximation using the dispersive wave profile (94). Right The Gini index converges to