We study radially symmetric solutions to the 2D Vlasov-Maxwell system and construct solutions that initially possess arbitrarily small $ C^k $ norms ($ k \geq 1 $) for the charge densities and the electric fields, but attain arbitrarily large $ L^\infty $ norms of them at some later time. The proof is done by carefully tracking the trajectories of the particles to observe the emergence of a concentrating behavior. It is the first result to discuss this kind of behavior happening in the Vlasov-Maxwell dynamics.
Citation: |
[1] | C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2 (1985), 101-118. doi: 10.1016/s0294-1449(16)30405-x. |
[2] | J. Ben-Artzi, S. Calogero and S. Pankavich, Arbitrarily large solutions of the Vlasov-Poisson system, SIAM Journal on Mathematical Analysis, 50 (2018), 4311-4326. doi: 10.1137/17M1142715. |
[3] | J. Ben-Artzi, S. Calogero and S. Pankavich, Concentrating solutions of the relativistic Vlasov-Maxwell system, Communications in Mathematical Sciences, 17 (2019), 377-392. doi: 10.4310/CMS.2019.v17.n2.a4. |
[4] | J. P. Friedberg, Ideal Magnetohydrodynamics, Plenum Press, New York, 1987. doi: 10.1007/978-1-4757-0836-3. |
[5] | R. T. Glassey, The Cauchy Problem in Kinetic Theory, SIAM, 1996. doi: 10.1137/1.9781611971477. |
[6] | R. Glassey, S. Pankavich and J. Schaeffer, Decay in time for a one-dimensional, two component plasma, Math. Methods Appl. Sci., 31 (2008), 2115-2132. doi: 10.1002/mma.1015. |
[7] | R. Glassey, S. Pankavich and J. Schaeffer, On long-time behavior of monocharged and neutral plasma in one and one-half dimensions, Kinetic and Related Models, 2 (2009), 465-488. doi: 10.3934/krm.2009.2.465. |
[8] | R. Glassey, S. Pankavich and J. Schaeffer, Large time behavior of the relativistic Vlasov-Maxwell system in low space dimension, Differential and Integral Equations, 23 (2010), 61-77. |
[9] | R. T. Glassey and J. Schaeffer, On symmetric solutions of the relativistic Vlasov-Poisson system, Comm. Math. Phys., 101 (1985), 459-473. doi: 10.1007/BF01210740. |
[10] | R. T. Glassey and J. Schaeffer, The Relativistic Vlasov-Maxwell System in Two Space Dimensions: Part Ⅰ, Arch Rational Mech. Anal., 141 (1998), 331-354. doi: 10.1007/s002050050079. |
[11] | R. T. Glassey and J. Schaeffer, The Relativistic Vlasov-Maxwell System in Two Space Dimensions: Part Ⅱ, Arch Rational Mech. Anal., 141 (1998), 355-374. doi: 10.1007/s002050050079. |
[12] | R. T. Glassey and J. Schaeffer, On global symmetric solutions to the relativistic Vlasov-Poisson equation in three space dimensions, Mathematical Methods in the Applied Sciences, 24 (2001), 143-157. doi: 10.1002/1099-1476(200102)24:3<143::AID-MMA202>3.0.CO;2-C. |
[13] | R. Glassey, J. Schaeffer and S. Pankavich, Time decay for solutions to one-dimensional two component plasma equations, Quarterly of Applied Mathematics, 68 (2010), 135-141. doi: 10.1090/S0033-569X-09-01143-4. |
[14] | R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Archive for Rational Mechanics and Analysis, 92 (1986), 59-90. doi: 10.1007/BF00250732. |
[15] | E. Horst, Symmetric plasmas and their decay, Comm. Math. Phys., 126 (1990), 613-633. doi: 10.1007/BF02125703. |
[16] | R. Illner and G. Rein, Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, Math. Methods Appl. Sci., 19 (1996), 1409-1413. doi: 10.1002/(SICI)1099-1476(19961125)19:17<1409::AID-MMA836>3.0.CO;2-2. |
[17] | A. D. Ionescu, B. Pausader, X. Wang and K. Widmayer, On the asymptotic behavior of solutions to the Vlasov-Poisson system, International Mathematics Research Notices, 2022 (2022), 8865-8889. doi: 10.1093/imrn/rnab155. |
[18] | J. W. Jang, R. M. Strain and and T. K. Wong, Magnetic confinement for the 2D axisymmetric relativistic Vlasov-Maxwell system in an annulus, Kinetic & Related Models, 15 (2022), 569-604. doi: 10.3934/krm.2021039. |
[19] | S. Klainerman and G. Staffilani, A new approach to study the Vlasov-Maxwell system, Commun. Pure Appl. Anal., 1 (2002), 103-125. doi: 10.3934/cpaa.2002.1.103. |
[20] | P.-L. Lions and B. Perthame, Propogation of moments and regularity for the three dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430. doi: 10.1007/BF01232273. |
[21] | J. Luk and R. M. Strain, A new continuation criterion for the relativistic Vlasov-Maxwell system, Communications in Mathematical Physics, 331 (2014), 1005-1027. doi: 10.1007/s00220-014-2108-8. |
[22] | D. R. Nicholson, Introduction to Plasma Theory, Wiley, New York, 1983. |
[23] | S. Pankavich, Exact large time behavior of spherically symmetric plasmas, SIAM Journal on Mathematical Analysis, 53 (2021), 4474-4512. doi: 10.1137/20M1352508. |
[24] | K. Pfaffelmoser, Global classical solution of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eq., 95 (1992), 281-303. doi: 10.1016/0022-0396(92)90033-J. |
[25] | G. Rein and L. Taegert, Gravitational collapse and the Vlasov-Poisson system, Annales Henri Poincaré, 17 (2016), 1415-1427. doi: 10.1007/s00023-015-0424-y. |
[26] | X. Wang, Propagation of regularity and long time behavior of the $3D$ massive relativistic transport equation Ⅱ: Vlasov-Maxwell system, Communications in Mathematical Physics, 389 (2022), 715-812. doi: 10.1007/s00220-021-04257-x. |
[27] | K. Z. Zhang, Focusing solutions of the Vlasov-Poisson system, Kinetic & Related Models, 12 (2019), 1313-1327. doi: 10.3934/krm.2019051. |