We consider a particle system with uniform coupling between a macroscopic component and individual particles. The constraint for each particle is of full rank, which implies that each movement of the macroscopic component leads to a movement of all particles and vice versa. Skeletal muscle tissues share a similar property which motivates this work.
We prove convergence of the mean-field limit, well-posedness and a stability estimate for the mean-field PDE. This work generalises our previous results from [25] to the case of nonlinear constraints.
Citation: |
Figure 1. Skeletal muscle tissue contains arrays of aligned actin-myosin filaments. The myosin heads (red) attach to the actin filament (purple). Millions of such actin-myosin filaments repeatedly perform a cycle of "attaching, pulling and detaching". The resulting accumulated force leads to muscle contraction. In article, we ignore the repeated cycling. Instead, we focus on the mathematical implication of the coupling to the macroscopic component
[1] |
L. Andreis, P. Dai Pra and M. Fischer, McKean-Vlasov limit for interacting systems with simultaneous jumps, Stochastic Analysis and Applications, 36 (2018), 960-995.
doi: 10.1080/07362994.2018.1486202.![]() ![]() ![]() |
[2] |
M. Böl and S. Reese, Micromechanical modelling of skeletal muscles based on the finite element method, Computer Methods in Biomechanics and Biomedical Engineering, 11 (2008), 489-504.
doi: 10.1080/10255840701771750.![]() ![]() |
[3] |
R. Carmona, Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016.
doi: 10.1137/1.9781611974249.![]() ![]() ![]() |
[4] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4419-8524-8.![]() ![]() ![]() |
[5] |
R. W. R. Darling and J. R. Norris, Differential equation approximations for Markov chains, Probability Surveys, 5 (2008), 37-79.
doi: 10.1214/07-PS121.![]() ![]() ![]() |
[6] |
M. H. A. Davis, Piecewise-deterministic Markov processes: A general class of nondiffusion stochastic models, J. Roy. Statist. Soc. Ser. B, 46 (1984), 353-388.
doi: 10.1111/j.2517-6161.1984.tb01308.x.![]() ![]() ![]() |
[7] |
P. Degond, Macroscopic limits of the Boltzmann equation: A review, in Modeling and Computational Methods for Kinetic Equations, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Boston, MA, 2004, 3-57.
![]() ![]() |
[8] |
M. H. Gfrerer and B. Simeon, Fiber-based modeling and simulation of skeletal muscles, Multibody System Dynamics, 52 (2021), 1-30.
doi: 10.1007/s11044-021-09781-1.![]() ![]() ![]() |
[9] |
F. Golse, On the dynamics of large particle systems in the mean field limit, in Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, vol. 3 of Lect. Notes Appl. Math. Mech., Springer, [Cham], 2016, 1-144.
doi: 10.1007/978-3-319-26883-5_1.![]() ![]() ![]() |
[10] |
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. Ⅰ, vol. 8 of Springer Series in Computational Mathematics, 2nd edition, Springer-Verlag, Berlin, 1993, Nonstiff problems.
![]() ![]() |
[11] |
E. Hairer and G. Wanner, Solving Ordinary Differential Equations. Ⅱ, vol. 14 of Springer Series in Computational Mathematics, Second revised edition, Springer-Verlag, Berlin, 2010, Stiff and differential-algebraic problems.
doi: 10.1007/978-3-642-05221-7.![]() ![]() ![]() |
[12] |
T. Heidlauf, T. Klotz, C. Rode, E. Altan, C. Bleiler, T. Siebert and O. Röhrle, A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction, Biomechanics and Modeling in Mechanobiology, 15 (2016), 1423-1437.
doi: 10.1007/s10237-016-0772-7.![]() ![]() |
[13] |
W. Herzog, Skeletal muscle mechanics: Questions, problems and possible solutions, Journal of NeuroEngineering and Rehabilitation, 14 (2017), 98.
![]() |
[14] |
J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Nachdr. edition, Sinauer, Sunderland, Mass, 2001.
doi: 10.1115/1.1451234.![]() ![]() |
[15] |
A. F. Huxley, Muscle structure and theories of contraction, Progress in Biophysics and Biophysical Chemistry, 7 (1957), 255-318.
doi: 10.1016/S0096-4174(18)30128-8.![]() ![]() |
[16] |
A. F. Huxley and R. M. Simmons, Proposed mechanism of force generation in striated muscle, Nature, 233 (1971), 533-538.
doi: 10.1038/233533a0.![]() ![]() |
[17] |
H. Huxley and J. Hanson, Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation, Nature, 173 (1954), 973-976.
doi: 10.1038/173973a0.![]() ![]() |
[18] |
P.-E. Jabin, A review of the mean field limits for Vlasov equations, Kinetic and Related Models, 7 (2014), 661-711.
doi: 10.3934/krm.2014.7.661.![]() ![]() ![]() |
[19] |
B. Jourdain and S. Méléard, Propagation of chaos and fluctuations for a moderate model with smooth initial data, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, 34 (1998), 727-766.
doi: 10.1016/S0246-0203(99)80002-8.![]() ![]() ![]() |
[20] |
J. Keener and J. Sneyd, Mathematical Physiology. Vol. Ⅰ: Cellular Physiology, vol. 8 of Interdisciplinary Applied Mathematics, 2nd edition, Springer, New York, 2009.
doi: 10.1007/978-0-387-79388-7.![]() ![]() ![]() |
[21] |
J. Keener and J. Sneyd, Mathematical Physiology. Vol. Ⅱ: Systems Physiology, vol. 8 of Interdisciplinary Applied Mathematics, 2nd edition, Springer, New York, 2009.
doi: 10.1007/978-0-387-79388-7_1.![]() ![]() ![]() |
[22] |
S. Ma and G. I. Zahalak, A distribution-moment model of energetics in skeletal muscle, Journal of Biomechanics, 24 (1991), 21-35.
doi: 10.1016/0021-9290(91)90323-F.![]() ![]() |
[23] |
J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity, 1983, Published: Prentice-Hall Civil Engineering and Engineering Mechanics Series. Englewood Cliffs, New Jersey: Prentice-Hall, Inc. XVIII, 1983.
![]() |
[24] |
R. Phillips, J. Kondev, J. Theriot and H. Garcia, Physical Biology of the Cell, 2nd edition, Garland Science, Boca Raton, 2012.
doi: 10.1201/9781134111589.![]() ![]() |
[25] |
S. Plunder and B. Simeon, Coupled systems of linear differential-algebraic and kinetic equations with application to the mathematical modelling of muscle tissue, in Progress in Differential-Algebraic Equations Ⅱ (eds. T. Reis, S. Grundel and S. Schöps), Differential-Algebraic Equations Forum, Springer International Publishing, Cham, 2020,357-395.
doi: 10.1007/978-3-030-53905-4_12.![]() ![]() ![]() |
[26] |
B. Simeon, R. Serban and L. R. Petzold, A model of macroscale deformation and microvibration in skeletal muscle tissue, M2AN. Mathematical Modelling and Numerical Analysis, 43 (2009), 805-823.
doi: 10.1051/m2an/2009030.![]() ![]() ![]() |
[27] |
H. Spohn, Large Scale Dynamics of Interacting Particles, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1991.
doi: 10.1007/978-3-642-84371-6.![]() ![]() |
[28] |
C. Villani, Optimal Transport, vol. 338 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-71050-9.![]() ![]() ![]() |
[29] |
W. Walter, Differential and Integral Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 55, Springer-Verlag, New York-Berlin, 1970.
![]() ![]() |
[30] |
G. I. Zahalak, Non-axial muscle stress and stiffness, Journal of Theoretical Biology, 182 (1996), 59-84.
doi: 10.1006/jtbi.1996.0143.![]() ![]() |
[31] |
G. I. Zahalak, A distribution-moment approximation for kinetic theories of muscular contraction, Mathematical Biosciences, 55 (1981), 89-114.
doi: 10.1016/0025-5564(81)90014-6.![]() ![]() |
Skeletal muscle tissue contains arrays of aligned actin-myosin filaments. The myosin heads (red) attach to the actin filament (purple). Millions of such actin-myosin filaments repeatedly perform a cycle of "attaching, pulling and detaching". The resulting accumulated force leads to muscle contraction. In article, we ignore the repeated cycling. Instead, we focus on the mathematical implication of the coupling to the macroscopic component
Example for the deformation map and its action on cross-bridges
Simplified model for a straight muscle fiber (orange) with attached cross-bridges (purple) inside