\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Backward problem for the 1D ionic Vlasov-Poisson equation

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we study the backward problem for the one-dimensional Vlasov-Poisson system with massless electrons, and we show the Landau damping by fixing the asymptotic behaviour of our solution.

    Mathematics Subject Classification: 82D10, 35Q83, 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. A. Arsenev, Existence in the large of a weak solution of Vlasov's system of equations, Ž. Vyčisl. Mat i Mat. Fiz., 15 (1975), 136-147,276.
    [2] C. Bardos and P. Degond, Existence globale des solutions des équations de Vlasov-Poisson, Nonlinear Partial Differential Equations and Their Applications, Collège de France seminar, Vol. VII (Paris, Res. Notes in Math., Pitman, Boston, MA, 122 (1985), 35-58.
    [3] C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in $3$ space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 101-118.  doi: 10.1016/s0294-1449(16)30405-x.
    [4] C. Bardos, P. Degond and F. Golse, A priori estimates and existence results for the Vlasov and Boltzmann equations, Nonlinear Systems of Partial Differentil Equations in Applied Mathematics, Part 2, Lectures in Appl. Math., Amer. Math. Soc., Providence, RI, 23 (1986), 189-207.
    [5] C. Bardos, F. Golse, T. Nguyen and R. Sentis, The Maxwell-Boltzmann approximation for ion kinetic modeling, Phys. D, 376/377 (2018), 94-107. doi: 10.1016/j.physd.2017.10.014.
    [6] J. Batt and G. Rein, Global classical solutions of the periodic Vlasov-Poisson system in three dimensions, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 411-416. 
    [7] J. Bedrossian, N. Masmoudi and C. Mouhot, Landau damping: Paraproducts and Gevrey regularity, Ann. PDE, 2 (2016), Art. 4, 71 pp. doi: 10.1007/s40818-016-0008-2.
    [8] D. BenedettoE. Caglioti and S. Rossi, Comparison between the Cauchy problem and the scattering problem for the Landau damping in the Vlasov-HMF equation, Asymptot. Anal., 129 (2022), 215-238.  doi: 10.3233/ASY-211726.
    [9] F. Bouchut, Global weak solution of the Vlasov-Poisson system for small electrons mass, Comm. Partial Differential Equations, 16 (1991), 1337-1365.  doi: 10.1080/03605309108820802.
    [10] T. J. M. Boyd and J. J. Sanderson, The Physics of Plasmas, Cambridge University Press, 2003. doi: 10.1017/CBO9780511755750.
    [11] E. Caglioti and C. Maffei, Time asymptotics for solutions of Vlasov-Poisson equation in a circle, J. Statist. Phys., 92 (1998), 301-323.  doi: 10.1023/A:1023055905124.
    [12] L. Cesbron and M. Iacobelli, Global well-posedness of Vlasov-Poisson-type systems in bounded domains, (2021), arXiv: 2108.11209v1.
    [13] Z. Chen and J. Chen, Moments propagation for weak solutions of the Vlasov-Poisson system in the three-dimensional torus, J. Math. Anal. Appl., 472 (2019), 728-737.  doi: 10.1016/j.jmaa.2018.11.049.
    [14] A. Gagnebin and M. Iacobelli, Landau damping on the torus for the Vlasov-Poisson system with massless electrons, (2022), arXiv: 2209.04676.
    [15] E. GrenierT. T. Nguyen and I. Rodnianski, Landau damping for analytic and Gevrey data, Math. Res. Lett., 28 (2021), 1679-1702.  doi: 10.4310/MRL.2021.v28.n6.a3.
    [16] M. Griffin-Pickering and M. Iacobelli, Global strong solutions in $\mathbb{R}^3$ for ionic Vlasov-Poisson systems, Kinet. Relat. Models, 14 (2021), 571-597.  doi: 10.3934/krm.2021016.
    [17] M. Griffin-Pickering and M. Iacobelli, Global well-posedness for the Vlasov-Poisson system with massless electrons in the 3-dimensional torus, Comm. Partial Differential Equations, 46 (2021), 1892-1939.  doi: 10.1080/03605302.2021.1913750.
    [18] M. Griffin-Pickering and M. Iacobelli, Recent developments on the well-posedness theory for Vlasov-type equations, From Particle Systems to Partial Differential Equations, Springer Proc. Math. Stat., Springer, Cham, 352 (2021), 301-319.  doi: 10.1007/978-3-030-69784-6_14.
    [19] D. Han-Kwan and M. Iacobelli, The quasineutral limit of the Vlasov-Poisson equation in Wasserstein metric, Commun. Math. Sci., 15 (2017), 481-509.  doi: 10.4310/CMS.2017.v15.n2.a8.
    [20] E. Horst and R. Hunze, Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, Math. Methods Appl. Sci., 6 (1984), 262-279.  doi: 10.1002/mma.1670060118.
    [21] L. Huang, Q.-H. Nguyen and Y. Xu, Nonlinear Landau damping for the 2d Vlasov-Poisson system with massless electrons around Penrose-stable equilibria, (2022), arXiv: 2206.11744.
    [22] L. Huang, Q.-H. Nguyen and Y. Xu, Sharp estimates for screened Vlasov-Poisson system around Penrose-stable equilibria in $\mathbb{R}^d$, $d\geq3$, (2022), arXiv: 2205.10261.
    [23] H. J. Hwang and J. L. L. Velázquez, On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem, Indiana Univ. Math. J., 58 (2009), 2623-2660.  doi: 10.1512/iumj.2009.58.3835.
    [24] S. V. Iordanskiĭ, The Cauchy problem for the kinetic equation of plasma, Trudy Mat. Inst. Steklov., 60 (1961), 181-194. 
    [25] L. Landau, On the vibrations of the electronic plasma, Akad. Nauk SSSR. Zhurnal Eksper. Teoret. Fiz, 16 (1946), 574-586. 
    [26] P.-L. Lions and B. Perthame, Propagation of moments and regularity for the $3$-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.  doi: 10.1007/BF01232273.
    [27] G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., 86 (2006), 68-79.  doi: 10.1016/j.matpur.2006.01.005.
    [28] E. Miot, A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system, Comm. Math. Phys., 346 (2016), 469-482.  doi: 10.1007/s00220-016-2707-7.
    [29] C. Mouhot and C. Villani, On Landau damping, Acta Math., 207 (2011), 29-201.  doi: 10.1007/s11511-011-0068-9.
    [30] C. Pallard, Moment propagation for weak solutions to the Vlasov-Poisson system, Comm. Partial Differential Equations, 37 (2012), 1273-1285.  doi: 10.1080/03605302.2011.606863.
    [31] O. Penrose, Electrostatic instabilities of a uniform non-maxwellian plasma, Physics of Fluids (U.S.), 3 (1960), 258-265.  doi: 10.1063/1.1706024.
    [32] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations, 95 (1992), 281-303.  doi: 10.1016/0022-0396(92)90033-J.
    [33] D. D. Ryutov, Landau damping: Half a century with the great discovery, Plasma Physics and Controlled Fusion, 41 (1999), A1-A12. doi: 10.1088/0741-3335/41/3A/001.
    [34] J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. Partial Differential Equations, 16 (1991), 1313-1335.  doi: 10.1080/03605309108820801.
    [35] S. Ukai and T. Okabe, On classical solutions in the large in time of two-dimensional Vlasov's equation, Osaka Math. J., 15 (1978), 245-261. 
    [36] C. Villani, Landau damping, Notes de cours, CEMRACS, (2010), http://www.cedricvillani.org/sites/dev/files/old_images/2012/08/B13.Landau.pdf.
  • 加载中
SHARE

Article Metrics

HTML views(2262) PDF downloads(348) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return