| $ \lambda_n $ | $ \lambda_\tau $ | $ \lambda_\gamma $ | |
| $ \mathsf{Non-mixing}$ | 3.005 | 3.000 | 3.007 |
| $ \mathsf{Mixing}$ | 1.469 | 1.465 | 1.470 |
The goal of the present paper is to explore the long-time behavior of the growth-fragmentation equation formulated in the case of equal mitosis and variability in growth rate, under fairly general assumptions on the coefficients. The first results concern the monotonicity of the Malthus parameter with respect to the coefficients. Existence of a solution to the associated eigenproblem is then stated in the case of a finite set of growth rates thanks to the Kreĭn-Rutman theorem and a series of estimates on the moments. Providing additionally enough mixing in the population expressed in terms of irreducibility of the transition kernel, uniqueness of the eigenelements and asynchronous exponential growth are stated through entropy methods. Notably, convergence in shape to the steady state holds in the case of individual exponential growth where, in the absence of variability, the solution is known to exhibit oscillations at large times. We eventually perform a few numerical approximations to illustrate our results and discuss our mixing condition.
| Citation: |
Figure 2. Time evolution of the size distribution per feature, either the whole distribution at a few times (bottom) or at many times but only at size $ x = 1 $ (top). Obtained with coefficients $ \tau (v, x) = vx $, $ \gamma(v, x) = x^2 \tau(v, x) $ and the two variability kernels $ \kappa^{red} $ (2a) and $ \kappa^{irr} $ (2b)
Figure 3. Time evolution of the estimates of the instantaneous population growth rate obtained with coefficients $ \tau (v, x) = vx $, $ \gamma(v, x) = x^2 \tau(v, x) $ and the two variability kernels $ \kappa^{red} $ (left) and $ \kappa^{irr} $ (middle). For any $ t>0 $, $ \lambda_n(t) $ is obtained by linear regression of the log of the total number, $ s \mapsto \ln \big( \int \! \! \! \int_{ \mathcal{S}} n(s, v, x) \, {\text{d}} v {\text{d}}x \big) $ (right), on the time interval $ \big[ \frac{t}{2}, t \big] $.
Figure 4. Time evolution of the size distribution per feature at size $ x = 1 $, for the variability kernels $ \kappa^{_{F t S}}(p_0 \pm \varepsilon) $, with $ p_0 $ defined by (22) and $ \varepsilon = 0.05 $ to show that $ p_0 $ appears as a critical value for $ p $ in the case Fastest to Slowest. Obtained with the coefficients $ \tau (v, x) = vx $, $ \gamma(v, x) = x^2 \tau(v, x) $
Figure 5. Time evolution of the size distribution per feature, either the whole distribution at a few times (bottom) or at many times but only at size $ x = 1 $ (top). Obtained with coefficients $ \tau (v, x) = vx $, $ \gamma(v, x) = x^2 \tau(v, x) $ and the variability kernels $ \kappa^{_{S t F}}(0.5) $, $ \kappa^{_{F t S}}(0.2) $ and $ \kappa^{_{F t S}}(0.8) $. The corresponding Malthus parameters were estimated to be (up to $ 10^{-3} $ precision) $ v_2 = 2 $, $ v_1 = 1 $, and $ \lambda_{2, 0.8} \approx 1.356 $, respectively, in accordance with the conjecture (see Table 2)
Table 1. Estimations of the Malthus parameters through different methods
| $ \lambda_n $ | $ \lambda_\tau $ | $ \lambda_\gamma $ | |
| $ \mathsf{Non-mixing}$ | 3.005 | 3.000 | 3.007 |
| $ \mathsf{Mixing}$ | 1.469 | 1.465 | 1.470 |
Table 2.
Conjecture of the long-time behavior when
| $ \mathcal{P} $ | $ N_1 $ | $ N_2 $ | $ \lambda $ | |
| $ \kappa^{_{S t F}}(p) $ | $ (0, 1) $ | $ 0 $ | periodic | $ v_2 $ |
| $ \kappa^{_{F t S}}(p) $ | $ (0, p_0) $ | periodic | $ 0 $ | $ v_1 $ |
| $ (p_0, 1) $ | periodic | periodic | $ \lambda_{v_2, p} $ |
| [1] |
E. C. Anderson and D. F. Petersen, Cell growth and division: Ⅱ. experimental studies of cell volume distributions in mammalian suspension cultures, Biophysical Journal, 7 (1967), 353-364.
|
| [2] |
O. Arino, A survey of structured cell population dynamics, Acta Biotheoretica, 43 (1995), 3-25.
|
| [3] |
N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik and S. Leibler, Bacterial persistence as a phenotypic switch, Science, 305 (2004), 1622-1625.
|
| [4] |
V. Bansaye, B. Cloez, P. Gabriel and A. Marguet, A non-conservative harris ergodic theorem, J. Lond. Math. Soc., 106 (2022), 2459-2510.
|
| [5] |
G. I. Bell and E. C. Anderson, Cell growth and division: Ⅰ. a mathematical model with applications to cell volume distributions in mammalian suspension cultures, Biophysical Journal, 7 (1967), 329-351.
|
| [6] |
É. Bernard, M. Doumic and P. Gabriel, Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts, Kinet. Relat. Models, 12 (2019), 551-571.
doi: 10.3934/krm.2019022.
|
| [7] |
É. Bernard and P. Gabriel, Asynchronous exponential growth of the growth-fragmentation equation with unbounded fragmentation rate, J. Evol. Equ., 20 (2020), 375-401.
doi: 10.1007/s00028-019-00526-4.
|
| [8] |
F. Billy, J. Clairambault, O. Fercoq, S. Gaubert, T. Lepoutre, T. Ouillon and S. Saito, Synchronisation and control of proliferation in cycling cell population models with age structure, Math. Comput. Simulation, 96 (2014), 66-94.
doi: 10.1016/j.matcom.2012.03.005.
|
| [9] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
|
| [10] |
B. v. Brunt, A. Almalki, T. L. Lynch and A. A. Zaidi, On a cell division equation with a linear growth rate, ANZIAM J., 59 (2018), 293-312.
doi: 10.1017/S1446181117000591.
|
| [11] |
V. Calvez, M. Doumic and P. Gabriel, Self-similarity in a general aggregation-fragmentation problem. Application to fitness analysis, Journal de Mathématiques Pures et Appliquées, 98 (2012), 1-27.
|
| [12] |
F. Campillo, N. Champagnat and C. Fritsch, On the variations of the principal eigenvalue with respect to a parameter in growth-fragmentation models, Commun. Math. Sci, 15 (2017), 1801-1819.
doi: 10.4310/CMS.2017.v15.n7.a1.
|
| [13] |
J. A. Cañizo, P. Gabriel and H. Yoldaş, Spectral gap for the growth-fragmentation equation via Harris's theorem, SIAM J. Math. Anal., 53 (2021), 5185-5214.
doi: 10.1137/20M1338654.
|
| [14] |
G. Chiorino, J. A. J. Metz, D. Tomasoni and P. Ubezio, Desynchronization rate in cell populations: Mathematical modeling and experimental data, J. Theoret. Biol., 208 (2001), 185-199.
|
| [15] |
J. Clairambault, P. Michel and B. Perthame, Circadian rhythm and tumour growth, Comptes Rendus Mathematique, 342 (2006), 17-22.
doi: 10.1016/j.crma.2005.10.029.
|
| [16] |
B. Cloez, B. de Saporta and T. Roget, Long-time behavior and darwinian optimality for an asymmetric size-structured branching process, J. Math. Biol., 83 (2021), 30 pp.
doi: 10.1007/s00285-021-01695-y.
|
| [17] |
B. Cloez and P. Gabriel, On an irreducibility type condition for the ergodicity of nonconservative semigroups, Comptes Rendus Mathématique, 358 (2020), 733-742.
|
| [18] |
R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications, Springer Science & Business Media, 1999.
|
| [19] |
O. Diekmann, H. J. A. M. Heijmans and H. R. Thieme, On the stability of the cell size distribution, J. Math. Biol., 19 (1984), 227-248.
doi: 10.1007/BF00277748.
|
| [20] |
O. Diekmann, H. A. Lauwerier, T. Aldenberg and J. A. Metz, Growth, fission and the stable size distribution, J. Math. Biol., 18 (1983), 135-148.
|
| [21] |
M. Doumic and B. v. Brunt, Explicit solution and fine asymptotics for a critical growth-fragmentation equation, ESAIM Proc. Surveys, 62 (2018), 30-42.
doi: 10.1051/proc/201862030.
|
| [22] |
M. Doumic and M. Escobedo, Time asymptotics for a critical case in fragmentation and growth-fragmentation equations, Kinet. Relat. Models, 9 (2016), 251-297.
doi: 10.3934/krm.2016.9.251.
|
| [23] |
M. Doumic, M. Hoffmann, N. Krell and L. Robert, Statistical estimation of a growth-fragmentation model observed on a genealogical tree, Bernoulli, 21 (2015), 1760-1799.
doi: 10.3150/14-BEJ623.
|
| [24] |
M. Doumic, A. Olivier and L. Robert, Estimating the division rate from indirect measurements of single cells, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 3931-3961.
doi: 10.3934/dcdsb.2020078.
|
| [25] |
M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model, Math. Models Methods Appl. Sci., 20 (2010), 757-783.
doi: 10.1142/S021820251000443X.
|
| [26] |
A. G. Fredrickson, D. Ramkrishna and H. M. Tsuchiya, Statistics and dynamics of procaryotic cell populations, Math. Biosci., 1 (1967), 327-374.
|
| [27] |
P. Gabriel and H. Martin, Steady distribution of the incremental model for bacteria proliferation, Netw. Heterog. Media, 14 (2019), 149-171.
doi: 10.3934/nhm.2019008.
|
| [28] |
P. Gabriel and H. Martin, Periodic asymptotic dynamics of the measure solutions to an equal mitosis equation, Annales Henri Lebesgue, 5 (2022), 275-301.
doi: 10.5802/ahl.123.
|
| [29] |
G. Y. Gangwe Nana, C. Ripoll, A. Cabin-Flaman, D. Gibouin, A. Delaune, L. Janniere, G. Grancher, G. Chagny, C. Loutelier-Bourhis, E. Lentzen, P. Grysan, J.-N. Audinot and V. Norris, Division-based, growth rate diversity in bacteria, Frontiers in Microbiology, 9 (2018), 849.
|
| [30] |
S. Gaubert and T. Lepoutre, Discrete limit and monotonicity properties of the Floquet eigenvalue in an age structured cell division cycle model, J. Math. Biol., 71 (2015), 1663-1703.
doi: 10.1007/s00285-015-0874-3.
|
| [31] |
E. C. Gregg and K. D. Steidley, Electrical counting and sizing of mammalian Cells in suspension, Biophysical Journal, 5 (1965), 393-405.
|
| [32] |
G. Greiner and R. Nagel, Growth of cell populations via one-parameter semigroups of positive operators, Mathematics Applied to Science, Academic Press, (1988), 79-105.
|
| [33] |
M. Gyllenberg, Mathematical aspects of physiologically structured populations: The contributions of J. A. J. Metz, J. Biol. Dyn., 1 (2007), 3-44.
doi: 10.1080/17513750601032737.
|
| [34] |
M. Gyllenberg and G. F. Webb, A nonlinear structured population model of tumor growth with quiescence, J. Math. Biol., 28 (1990), 671-694.
doi: 10.1007/BF00160231.
|
| [35] |
A. J. Hall, G. C. Wake and P. W. Gandar, Steady size distributions for cells in one-dimensional plant tissues, J. Math. Biol., 30 (1991), 101-123.
|
| [36] |
H. J. A. M. Heijmans, On the stable size distribution of populations reproducing by fission into two unequal parts, Mathematical Biosciences, 72 (1984), 19-50.
doi: 10.1016/0025-5564(84)90059-2.
|
| [37] |
D. J. Kiviet, P. Nghe, N. Walker, S. Boulineau, V. Sunderlikova and S. J. Tans, Stochasticity of metabolism and growth at the single-cell level, Nature, 514 (2014), 376-379.
|
| [38] |
M. G. Kre${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$n and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Matematicheskikh Nauk, 3 (1948), 3-95.
|
| [39] |
E. Levien, J. Min, J. Kondev and A. Amir, Non-genetic variability: survival strategy or nuisance?, Rep. Progr. Phys., 84 (2021), 18 pp.
|
| [40] |
J. A. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, Springer-Verlag, 1986.
doi: 10.1007/978-3-662-13159-6.
|
| [41] |
S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Comm. Control Engrg. Ser., Springer-Verlag, London, 1993.
doi: 10.1007/978-1-4471-3267-7.
|
| [42] |
P. Michel, Optimal proliferation rate in a cell division model, Math. Model. Nat. Phenom., 1 (2006), 23-44.
doi: 10.1051/mmnp:2008002.
|
| [43] |
P. Michel, S. Mischler and B. Perthame, General entropy equations for structured population models and scattering, Comptes Rendus Mathematique, 338 (2004), 697-702.
doi: 10.1016/j.crma.2004.03.006.
|
| [44] |
P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: an illustration on growth models, Journal de Mathématiques Pures et Appliquées, 84 (2005), 1235-1260.
doi: 10.1016/j.matpur.2005.04.001.
|
| [45] |
S. Mischler and J. Scher, Spectral analysis of semigroups and growth-fragmentation equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 849-898.
doi: 10.1016/j.anihpc.2015.01.007.
|
| [46] |
J. R. Norris, Markov Chains, Camb. Ser. Stat. Probab. Math., Cambridge University Press, Cambridge, 1997.
|
| [47] |
A. Olivier, How does variability in cells aging and growth rates influence the malthus parameter?, Kinet. Relat. Models, 10 (2017), 481-512.
doi: 10.3934/krm.2017019.
|
| [48] |
B. Perthame, Transport Equations in Biology. 4$^{th}$ edition, Birkhäuser Verlag, 2007.
|
| [49] |
B. Perthame and L. Ryzhik, Exponential decay for the fragmentation or cell-division equation, J. Dierential Equations, 210 (2005), 155-177.
doi: 10.1016/j.jde.2004.10.018.
|
| [50] |
L. Robert, M. Hoffmann, N. Krell, S. Aymerich, J. Robert and M. Doumic, Division in escherichia coli is triggered by a size-sensing rather than a timing mechanism, BMC Biology, 12 (2014), 17.
|
| [51] |
J. W. Sinko and W. Streifer, A new model for age-size structure of a population, Ecology, 48 (1967), 910-918.
|
| [52] |
S. Taheri-Araghi, S. Bradde, J. T. Sauls, N. S. Hill, P. A. Levin, J. Paulsson, M. Vergassola and S. Jun, Cell-size control and homeostasis in bacteria, Current Biology, 25 (2015), 385-391.
|
| [53] |
G. F. Webb, An operator-theoretic formulation of asynchronous exponential growth, Trans. Amer. Math. Soc., 303 (1987), 751-763.
doi: 10.2307/2000695.
|
Scheme of the growth mechanism of a cell with growth rate
Time evolution of the size distribution per feature, either the whole distribution at a few times (bottom) or at many times but only at size
Time evolution of the estimates of the instantaneous population growth rate obtained with coefficients
Time evolution of the size distribution per feature at size
Time evolution of the size distribution per feature, either the whole distribution at a few times (bottom) or at many times but only at size