We propose a new system for the modelling of thick sprays. We prove that this system verifies conservation properties together with a maximum principle regarding the volume fraction of the gas. Our main result is that the barotropic version of this system is locally in time well-posed in $ H^s $.
Citation: |
[1] |
O. Anoshchenko and A. Boutet de Monvel-Berthier, The existence of the global generalized solution of the system of equations describing suspension motion, Mathematical Methods in the Applied Sciences, 20 (1997), 495-519.
doi: 10.1002/(SICI)1099-1476(199704)20:6<495::AID-MMA858>3.0.CO;2-O.![]() ![]() ![]() |
[2] |
A. A. Amsden, P. J. O'Rourke and T. D. Butler, Kiva-ii: A Computer Program for Chemically Reactive Flows with Sprays, Los Alamos National Lab. (LANL), Los Alamos, NM (United States), 1989.
doi: 10.2172/6228444.![]() ![]() |
[3] |
C. Baranger and L. Desvillettes, Coupling Euler and Vlasov equations in the context of sprays: The local-in-time, classical solutions, Journal of Hyperbolic Differential Equations, 3 (2006), 1-26.
doi: 10.1142/S0219891606000707.![]() ![]() ![]() |
[4] |
C. Buet, B. Després and L. Desvillettes, Linear stability of thick sprays equations, Journal of Statistical Physics, 190 (2023), Paper No. 53, 24 pp.
doi: 10.1007/s10955-022-03057-4.![]() ![]() ![]() |
[5] |
L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa, Global existence of solutions for the coupled vlasov and navier-stokes equations, Differential Integral Equations, 22 (2009), 1247-1271.
![]() ![]() |
[6] |
S. Benjelloun, L. Desvillettes, J. M. Ghidaglia and K. Nielsen, Modeling and simulation of thick sprays through coupling of a finite volume euler equation solver and a particle method for a disperse phase, Note di Matematica, 32 (2012), 63-85.
![]() ![]() |
[7] |
L. Boudin, L. Desvillettes and R. Motte, A modeling of compressible droplets in a fluid, Commun. Math. Sci., 1 (2003), 657-669.
doi: 10.4310/CMS.2003.v1.n4.a2.![]() ![]() ![]() |
[8] |
L. Boudin, C. Grandmont, B. Grec, S. Martin, A. Mecherbet and F. Noël, Fluid-kinetic modelling for respiratory aerosols with variable size and temperature, CEMRACS 2018 – Numerical and Mathematical Modeling for Biological and Medical Applications: Deterministic, Probabilistic and Statistical Descriptions, ESAIM Proc. Surveys, EDP Sci., Les Ulis, 67 (2020), 100-119.
doi: 10.1051/proc/202067007.![]() ![]() ![]() |
[9] |
L. Boudin, C. Grandmont, A. Lorz and A. Moussa, Modelling and numerics for respiratory aerosols, Communications in Computational Physics, 18 (2018), 723-756.
doi: 10.4208/cicp.180714.200415a.![]() ![]() ![]() |
[10] |
Y. Choi, Finite-time blow-up phenomena of Vlasov/Navier-Stokes equations and related systems, J. Math. Pures Appl., 108 (2017), 991-1021.
doi: 10.1016/j.matpur.2017.05.019.![]() ![]() ![]() |
[11] |
R. Caflisch and G. C. Papanicolaou, Dynamic theory of suspensions with brownian effects, SIAM J. Appl. Math., 43 (1983), 885-906.
doi: 10.1137/0143057.![]() ![]() ![]() |
[12] |
L. Desvillettes, Some aspects of the modeling at different scales of multiphase flows, Computer Methods in Applied Mechanics and Engineering, 199 (2010), 1265-1267.
doi: 10.1016/j.cma.2009.08.008.![]() ![]() ![]() |
[13] |
L. Desvillettes and J. Mathiaud, Some aspects of the asymptotics leading from gas-particles equations towards multiphase flows equations, Journal of Statistical Physics, 141 (2020), 120-141.
doi: 10.1007/s10955-010-0044-3.![]() ![]() ![]() |
[14] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Revised Edition, Textbooks in Mathematics. CRC Press, 2015.
![]() ![]() |
[15] |
L. Ertzbischoff, D. Han-Kwan and A. Moussa, Concentration versus absorption for the {Vlasov-Navier-Stokes} system on bounded domains, Nonlinearity, 34 (2021), 6843-6900.
doi: 10.1088/1361-6544/ac1558.![]() ![]() ![]() |
[16] |
P. Gao, H. R. Wakeford, S. E. Moran and V. Parmentier, Aerosols in exoplanet atmospheres, Journal of Geophysical Research: Planets, 126 (2021), e2020JE006655.
doi: 10.1029/2020JE006655.![]() ![]() |
[17] |
D. Han-Kwan, A. Moussa and I. Moyano, Large time behavior of the vlasov–navier–stokes system on the torus, Archive for Rational Mechanics and Analysis, 236 (2020), 1273-1323.
doi: 10.1007/s00205-020-01491-w.![]() ![]() ![]() |
[18] |
A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Appl. Math. Sci., 53. Springer New York, NY, 1984.
doi: 10.1007/978-1-4612-1116-7.![]() ![]() ![]() |
[19] |
J. Mathiaud, Local smooth solutions of a thin spray model with collisions, Mathematical Models and Methods in Applied Sciences, 20 (2010), 191-221.
doi: 10.1142/S0218202510004192.![]() ![]() ![]() |
[20] |
T. A. Mather, D. M. Pyle and C. Oppenheimer, Tropospheric volcanic aerosol, Washington DC American Geophysical Union Geophysical Monograph Series, 139 (2003), 189-212.
doi: 10.1029/139GM12.![]() ![]() |
[21] |
P. J. O'Rourke, Collective Drop Effects on Vaporizing Liquid Sprays, Technical report, Los Alamos National Lab., 1981.
![]() |
[22] |
K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, Journal of Differential Equations, 95 (1992), 281-303.
doi: 10.1016/0022-0396(92)90033-J.![]() ![]() ![]() |
[23] |
D. Serre, Systèmes de Lois de Conservation, Number vol. 1 in Fondations (Diderot). Diderot, 1996.
![]() ![]() |
[24] |
F. A. Williams, Combustion Theory, Second edition, Benjamin Cummings, 1985.
![]() |