\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Well-posedness for systems of self-propelled particles

  • *Corresponding author: Nicolas Meunier

    *Corresponding author: Nicolas Meunier
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • This paper deals with the existence and uniqueness of solutions to kinetic equations describing alignment of self-propelled particles. The particularity of these models is that the velocity variable is not on the Euclidean space but constrained on the unit sphere (the self-propulsion constraint). Two related equations are considered: the first one, in which the alignment mechanism is nonlocal, using an observation kernel depending on the space variable, and a second form, which is purely local, corresponding to the principal order of a scaling limit of the first one. We prove local existence and uniqueness of weak solutions in both cases for bounded initial conditions (in space and velocity) with finite total mass. The solution is proven to depend continuously on the initial data in $ L^p $ spaces with finite $ p $. In the case of a bounded kernel of observation, we obtain that the solution is global in time. Finally, by exploiting the fact that the second equation corresponds to the principal order of a scaling limit of the first one, we deduce a Cauchy theory for an approximate problem approaching the second one.

    Mathematics Subject Classification: Primary: 35A01; Secondary: 92B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] F. BolleyJ. A. Cañizo and J. A. Carrillo, Mean-field limit for the stochastic Vicsek model, Appl. Math. Lett., 25 (2012), 339-343.  doi: 10.1016/j.aml.2011.09.011.
    [2] M. BriantA. Diez and S. Merino-Aceituno, Cauchy theory for general kinetic vicsek models in collective dynamics and mean-field limit approximations, SIAM Journal on Mathematical Analysis, 54 (2022), 1131-1168.  doi: 10.1137/21M1405885.
    [3] A. Czirûk and T. Vicsek, Collective Motion, vol. 527, 2007,152-164.
    [4] I. DavidP. KohnkeG. LagriffoulO. PraudF. PlouarbouéP. Degond and X. Druart, Mass sperm motility is associated with fertility in sheep, Animal Reproduction Science, 161 (2015), 75-81.  doi: 10.1016/j.anireprosci.2015.08.006.
    [5] P. Degond, Global existence of smooth solutions for the vlasov-fokker-planck equation in 1 and 2 space dimensions, Annales Scientifiques de l'École Normale Supérieure, 19 (1986), 519-542.  doi: 10.24033/asens.1516.
    [6] P. Degond, A. Frouvelle and J.-G. Liu, A note on phase transitions for the Smoluchowski equation with dipolar potential, In Hyperbolic Problems: Theory, Numerics, Applications, (Padova, Italy, June 2012), P. M. A. M. Fabio Ancona, Alberto Bressan, Ed., vol. 8 of Applied Mathematics, AIMS, 179-192.
    [7] P. DegondA. Frouvelle and J.-G. Liu, Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics, Archive for Rational Mechanics and Analysis, 216 (2015), 63-115.  doi: 10.1007/s00205-014-0800-7.
    [8] P. DegondA. FrouvelleS. Merino-Aceituno and A. Trescases, Quaternions in collective dynamics, Multiscale Modeling & Simulation, 16 (2018), 28-77.  doi: 10.1137/17M1135207.
    [9] M. Doi, Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases, Journal of Polymer Science: Polymer Physics Edition, 19 (1981), 229-243.  doi: 10.1002/pol.1981.180190205.
    [10] L. C. Evans, Partial Differential Equations, second ed., vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.
    [11] A. FigalliM.-J. Kang and J. Morales, Global well-posedness of the spatially homogeneous kolmogorov–vicsek model as a gradient flow, Archive for Rational Mechanics and Analysis, 227 (2018), 869-896.  doi: 10.1007/s00205-017-1176-2.
    [12] A. Frouvelle and J.-G. Liu, Dynamics in a kinetic model of oriented particles with phase transition, SIAM Journal on Mathematical Analysis, 44 (2012), 791-826.  doi: 10.1137/110823912.
    [13] I. M. Gamba and M.-J. Kang, Global weak solutions for kolmogorov–vicsek type equations with orientational interactions, Archive for Rational Mechanics and Analysis, 222 (2016), 317-342.  doi: 10.1007/s00205-016-1002-2.
    [14] C. K. Hemelrijk and H. Hildenbrandt, Schools of fish and flocks of birds: Their shape and internal structure by self-organization, Interface Focus, 2 (2012), 726-737.  doi: 10.1098/rsfs.2012.0025.
    [15] H. HildenbrandtC. Carere and C. K. Hemelrijk, Self-organized aerial displays of thousands of starlings: A model, Behavioral Ecology, 21 (2010), 1349-1359.  doi: 10.1093/beheco/arq149.
    [16] J.-L. Lions, Équations Différentielles Opérationnelles et Problèmes aux Limites, Die Grundlehren der mathematischen Wissenschaften. Springer, 1961.
    [17] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao and R. A. Simha, Hydrodynamics of soft active matter, Reviews of Modern Physics, 85 (2013). doi: 10.1103/RevModPhys.85.1143.
    [18] B. MauryA. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Mathematical Models and Methods in Applied Sciences, 20 (2010), 1787-1821.  doi: 10.1142/S0218202510004799.
    [19] N. Meunier, L. Navoret and R. Voituriez, Phase transitions in cell assemblies with asymmetric aligning interactions, Submitted.
    [20] L. Onsager, The effects of shape on the interaction of colloidal particles, Annals of the New York Academy of Sciences, 51 (1949), 627-659.  doi: 10.1111/j.1749-6632.1949.tb27296.x.
    [21] F. Otto and A. E. Tzavaras, Continuity of velocity gradients in suspensions of rod-like molecules, Communications in Mathematical Physics, 277 (2008), 729-758.  doi: 10.1007/s00220-007-0373-5.
    [22] J. TonerY. Tu and S. Ramaswamy, Hydrodynamics and phases of flocks, Annals of Physics, 318 (2005), 170-244.  doi: 10.1016/j.aop.2005.04.011.
    [23] T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.
  • 加载中
SHARE

Article Metrics

HTML views(1610) PDF downloads(324) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return