\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the stabilization of a kinetic model by feedback-like control fields in a Monte Carlo framework

  • *Corresponding author: Jan Bartsch

    *Corresponding author: Jan Bartsch 

The first author is partially supported by Deutsche Forschungsgemeinschaft (DFG) within SFB 1432, Project-ID 425217212

Abstract / Introduction Full Text(HTML) Figure(6) / Table(1) Related Papers Cited by
  • The construction of feedback-like control fields for a kinetic model in phase space is investigated. The purpose of these controls is to drive an initial density of particles in the phase space to reach a desired cyclic trajectory and follow it in a stable way. For this purpose, an ensemble optimal control problem governed by the kinetic model is formulated in a way that is amenable to a Monte Carlo approach. The proposed formulation allows to define a one-shot solution procedure consisting in a backward solve of an augmented adjoint kinetic model. Results of numerical experiments demonstrate the effectiveness of the proposed control strategy.

    Mathematics Subject Classification: Primary: 49M05, 49M41, 65C05, 65K10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Quiver plot of the calculated control. The solid ellipse is the curve $ z_D(t) $, $ t\in[0, T] $. The arrows are given by the scaled vector $ (v, u(x, v, t))^T $

    Figure 2.  Evolution of $ f $ starting from a uniform initial distribution and subject to the control field $ u $

    Figure 3.  Control field and corresponding distribution of particles at final time using different values of the denoising parameter $ c_s $

    Figure 4.  Control field at final time for different values of the control weight $ \nu $

    Figure 5.  Averaged control $ \bar{u} $ defined in (17); quiver and 3D plot

    Figure 6.  Evolution of $ f $, starting with an initial Gaussian distribution and subject to the averaged control $ \bar{u} $. Time ordering as in Figure 1

    Table 1.  Numerical and physical parameters

    Symbol Value Symbol Value
    $ N_t $ 100 $ \Delta t $ $ 0.025 $
    $ N_x \times N_v $ [-] $ 50 \times 50 $ $ v_{\max} $ $ 5 $
    $ p_{\max} $ $ 10.0 $ $ \Delta v $ $ 0.2 $
    $ \Delta p $ $ 0.2 $ $ N_f $ $ 10^4 $
    $ \gamma $ $ 0.9999 $ $ \alpha $ $ 0.5 $
    $ \nu $ $ 1 $ $ C_\theta $, $ C_\varphi $ $ 10^3 $
    $ c_s $ $ 0.5 $ $ N_q^{N_t} $ $ 6 \cdot 10^2 $
     | Show Table
    DownLoad: CSV
  • [1] G. AlbiY.-P. ChoiM. Fornasier and D. Kalise, Mean field control hierarchy, Appl. Math. Optim., 76 (2017), 93-135.  doi: 10.1007/s00245-017-9429-x.
    [2] J. Bartsch and A. Borzì, MOCOKI: A Monte Carlo approach for optimal control in the force of a linear kinetic model, Comput. Phys. Commun., 266 (2021), 108030, 13 pp. doi: 10.1016/j.cpc.2021.108030.
    [3] J. Bartsch, A. Borzì, F. Fanelli and S. Roy, A theoretical investigation of Brockett's ensemble optimal control problems, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 162, 34 pp. doi: 10.1007/s00526-019-1604-2.
    [4] J. BartschG. Nastasi and A. Borzì, Optimal control of the Keilson-Storer master equation in a Monte Carlo framework, J. Comput. Theor. Transp., 50 (2021), 454-482.  doi: 10.1080/23324309.2021.1896552.
    [5] R. Beals and V. Protopopescu, Abstract time-dependent transport equations, J. Math. Anal. Appl., 121 (1987), 370-405.  doi: 10.1016/0022-247X(87)90252-6.
    [6] R. BellmanDynamic Programming, Princeton University Press, 1957. 
    [7] P. R. BermanJ. E. M. Haverkort and J. P. Woerdman, Collision kernels and transport coefficients, Phys. Rev. A, 34 (1986), 4647-4656. 
    [8] P. Berman and  V. MalinovskyPrinciples of Laser Spectroscopy and Quantum Optics, Princeton University Press, 2010. 
    [9] G. E. P. Box and M. E. Muller, A note on the generation of random normal deviates, Ann. Math. Statist., 29 (1958), 610-611. 
    [10] R. W. Brockett, Minimum attention control, Proceedings of the 36th IEEE Conference on Decision and Control, 3 (1997), 2628-2632. 
    [11] R. W. Brockett, Optimal Control of the Liouville Equation, In AMS/IP Stud. Adv. Math., 39 American Mathematical Society, Providence, RI, 2007. doi: 10.1090/amsip/039/02.
    [12] R. W. Brockett, Notes on the control of the Liouville equation, Control of Partial Differential Equations, 2048 (2012), 101-129.  doi: 10.1007/978-3-642-27893-8_2.
    [13] R. Caflisch, D. Silantyev and Y. Yang, Adjoint DSMC for nonlinear Boltzmann equation constrained optimization, J. Comput. Phys., 439 (2021), Paper No. 110404, 29 pp. doi: 10.1016/j.jcp.2021.110404.
    [14] J. Chen and M.-Z. Yang, Linear transport equation with specular reflection boundary condition, Transport Theory Statist. Phys., 20 (1991), 281-306.  doi: 10.1080/00411459108203907.
    [15] G. Fabbri, F. Gozzi and A. Świech, Stochastic Optimal Control in Infinite Dimension: Dynamic Programming and HJB Equations, Probability Theory and Stochastic Modelling. Springer International Publishing, 2017. doi: 10.1007/978-3-319-53067-3.
    [16] M. F. GelinA. P. BlokhinV. A. Tolkachev and W. Domcke, Microscopic derivation of the Keilson - Storer master equation, J. Chem. Phys., 462 (2015), 35-40. 
    [17] M. F. Gelin and D. S. Kosov, Molecular reorientation in hydrogen-bonding liquids: Through algebraic t - 3/2 relaxation toward exponential decay, J. Chem. Phys., 124 (2006), 144514. 
    [18] E. HairerC. Lubich and G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method, Acta Numer., 12 (2003), 399-450.  doi: 10.1017/S0962492902000144.
    [19] M. B. Horowitz, A. Damle and J. W. Burdick, Linear hamilton jacobi bellman equations in high dimensions, In 53rd IEEE Conference on Decision and Control, IEEE, (2014), 5880-5887.
    [20] C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Rev. Mod. Phys., 55 (1983), 645-705. 
    [21] J. Keilson and J. E. Storer, On Brownian motion, Boltzmann's equation, and the Fokker-Planck equation, Quart. Appl. Math., 10 (1952), 243-253.  doi: 10.1090/qam/50216.
    [22] D. S. Kosov, Telegraph noise in Markovian master equation for electron transport through molecular junctions, J. Chem. Phys., 148 (2018).
    [23] K. Lakshmi, R. Parvathy, S. Soumya and K. Soman, Image denoising solutions using heat diffusion equation, In 2012 International Conference on Power, Signals, Controls and Computation, IEEE, (2012), 1-5.
    [24] K. Latrach and B. Lods, Spectral analysis of transport equations with bounce-back boundary conditions, Math. Methods Appl. Sci., 32 (2009), 1325-1344.  doi: 10.1002/mma.1088.
    [25] Q. LiL. Wang and Y. Yang, Monte Carlo gradient in optimization constrained by radiative transport equation, SIAM J. Numer. Anal., 61 (2023), 2744-2774.  doi: 10.1137/22M1524515.
    [26] R. D. SkeelG. Zhang and T. Schlick, A family of symplectic integrators: Stability, accuracy, and molecular dynamics applications, SIAM J. Sci. Comput., 18 (1997), 203-222.  doi: 10.1137/S1064827595282350.
    [27] J. Speyer and R. Evans, A second variational theory for optimal periodic processes, IEEE Trans. Automat. Contr., 29 (1984), 138-148.  doi: 10.1109/TAC.1984.1103482.
    [28] M. L. Strekalov, Population relaxation of highly rotationally excited molecules at collisions, Chem. Phys. Lett., 548 (2012), 7-11. 
    [29] H. TranJ.-M. HartmannF. Chaussard and M. Gupta, An isolated line-shape model based on the Keilson-Storer function for velocity changes. ⅱ. molecular dynamics simulations and the q(1) lines for pure h2, J. Chem. Phys., 131 (2009), 154303. 
    [30] C. V. M. van der Mee, Trace theorems and kinetic equations for non-divergence-free external forces, Appl. Anal., 41 (1991), 89-110.  doi: 10.1080/00036819108840017.
    [31] L. Verlet, Computer "experiments" on classical fluids. Ⅰ. Thermodynamical properties of Lennard-Jones molecules, Physical Review, 159 (1967), 98. 
    [32] Y. Yang, D. Silantyev and R. Caflisch, Adjoint DSMC for nonlinear spatially-homogeneous Boltzmann equation with a general collision model, J. Comput. Phys., 488 (2023), Paper No. 112247. doi: 10.1016/j.jcp.2023.112247.
  • 加载中

Figures(6)

Tables(1)

SHARE

Article Metrics

HTML views(1009) PDF downloads(272) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return