[1]
|
G. Albi, Y.-P. Choi, M. Fornasier and D. Kalise, Mean field control hierarchy, Appl. Math. Optim., 76 (2017), 93-135.
doi: 10.1007/s00245-017-9429-x.
|
[2]
|
J. Bartsch and A. Borzì, MOCOKI: A Monte Carlo approach for optimal control in the force of a linear kinetic model, Comput. Phys. Commun., 266 (2021), 108030, 13 pp.
doi: 10.1016/j.cpc.2021.108030.
|
[3]
|
J. Bartsch, A. Borzì, F. Fanelli and S. Roy, A theoretical investigation of Brockett's ensemble optimal control problems, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 162, 34 pp.
doi: 10.1007/s00526-019-1604-2.
|
[4]
|
J. Bartsch, G. Nastasi and A. Borzì, Optimal control of the Keilson-Storer master equation in a Monte Carlo framework, J. Comput. Theor. Transp., 50 (2021), 454-482.
doi: 10.1080/23324309.2021.1896552.
|
[5]
|
R. Beals and V. Protopopescu, Abstract time-dependent transport equations, J. Math. Anal. Appl., 121 (1987), 370-405.
doi: 10.1016/0022-247X(87)90252-6.
|
[6]
|
R. Bellman, Dynamic Programming, Princeton University Press, 1957.
|
[7]
|
P. R. Berman, J. E. M. Haverkort and J. P. Woerdman, Collision kernels and transport coefficients, Phys. Rev. A, 34 (1986), 4647-4656.
|
[8]
|
P. Berman and V. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics, Princeton University Press, 2010.
|
[9]
|
G. E. P. Box and M. E. Muller, A note on the generation of random normal deviates, Ann. Math. Statist., 29 (1958), 610-611.
|
[10]
|
R. W. Brockett, Minimum attention control, Proceedings of the 36th IEEE Conference on Decision and Control, 3 (1997), 2628-2632.
|
[11]
|
R. W. Brockett, Optimal Control of the Liouville Equation, In AMS/IP Stud. Adv. Math., 39 American Mathematical Society, Providence, RI, 2007.
doi: 10.1090/amsip/039/02.
|
[12]
|
R. W. Brockett, Notes on the control of the Liouville equation, Control of Partial Differential Equations, 2048 (2012), 101-129.
doi: 10.1007/978-3-642-27893-8_2.
|
[13]
|
R. Caflisch, D. Silantyev and Y. Yang, Adjoint DSMC for nonlinear Boltzmann equation constrained optimization, J. Comput. Phys., 439 (2021), Paper No. 110404, 29 pp.
doi: 10.1016/j.jcp.2021.110404.
|
[14]
|
J. Chen and M.-Z. Yang, Linear transport equation with specular reflection boundary condition, Transport Theory Statist. Phys., 20 (1991), 281-306.
doi: 10.1080/00411459108203907.
|
[15]
|
G. Fabbri, F. Gozzi and A. Świech, Stochastic Optimal Control in Infinite Dimension: Dynamic Programming and HJB Equations, Probability Theory and Stochastic Modelling. Springer International Publishing, 2017.
doi: 10.1007/978-3-319-53067-3.
|
[16]
|
M. F. Gelin, A. P. Blokhin, V. A. Tolkachev and W. Domcke, Microscopic derivation of the Keilson - Storer master equation, J. Chem. Phys., 462 (2015), 35-40.
|
[17]
|
M. F. Gelin and D. S. Kosov, Molecular reorientation in hydrogen-bonding liquids: Through algebraic t - 3/2 relaxation toward exponential decay, J. Chem. Phys., 124 (2006), 144514.
|
[18]
|
E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method, Acta Numer., 12 (2003), 399-450.
doi: 10.1017/S0962492902000144.
|
[19]
|
M. B. Horowitz, A. Damle and J. W. Burdick, Linear hamilton jacobi bellman equations in high dimensions, In 53rd IEEE Conference on Decision and Control, IEEE, (2014), 5880-5887.
|
[20]
|
C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Rev. Mod. Phys., 55 (1983), 645-705.
|
[21]
|
J. Keilson and J. E. Storer, On Brownian motion, Boltzmann's equation, and the Fokker-Planck equation, Quart. Appl. Math., 10 (1952), 243-253.
doi: 10.1090/qam/50216.
|
[22]
|
D. S. Kosov, Telegraph noise in Markovian master equation for electron transport through molecular junctions, J. Chem. Phys., 148 (2018).
|
[23]
|
K. Lakshmi, R. Parvathy, S. Soumya and K. Soman, Image denoising solutions using heat diffusion equation, In 2012 International Conference on Power, Signals, Controls and Computation, IEEE, (2012), 1-5.
|
[24]
|
K. Latrach and B. Lods, Spectral analysis of transport equations with bounce-back boundary conditions, Math. Methods Appl. Sci., 32 (2009), 1325-1344.
doi: 10.1002/mma.1088.
|
[25]
|
Q. Li, L. Wang and Y. Yang, Monte Carlo gradient in optimization constrained by radiative transport equation, SIAM J. Numer. Anal., 61 (2023), 2744-2774.
doi: 10.1137/22M1524515.
|
[26]
|
R. D. Skeel, G. Zhang and T. Schlick, A family of symplectic integrators: Stability, accuracy, and molecular dynamics applications, SIAM J. Sci. Comput., 18 (1997), 203-222.
doi: 10.1137/S1064827595282350.
|
[27]
|
J. Speyer and R. Evans, A second variational theory for optimal periodic processes, IEEE Trans. Automat. Contr., 29 (1984), 138-148.
doi: 10.1109/TAC.1984.1103482.
|
[28]
|
M. L. Strekalov, Population relaxation of highly rotationally excited molecules at collisions, Chem. Phys. Lett., 548 (2012), 7-11.
|
[29]
|
H. Tran, J.-M. Hartmann, F. Chaussard and M. Gupta, An isolated line-shape model based on the Keilson-Storer function for velocity changes. ⅱ. molecular dynamics simulations and the q(1) lines for pure h2, J. Chem. Phys., 131 (2009), 154303.
|
[30]
|
C. V. M. van der Mee, Trace theorems and kinetic equations for non-divergence-free external forces, Appl. Anal., 41 (1991), 89-110.
doi: 10.1080/00036819108840017.
|
[31]
|
L. Verlet, Computer "experiments" on classical fluids. Ⅰ. Thermodynamical properties of Lennard-Jones molecules, Physical Review, 159 (1967), 98.
|
[32]
|
Y. Yang, D. Silantyev and R. Caflisch, Adjoint DSMC for nonlinear spatially-homogeneous Boltzmann equation with a general collision model, J. Comput. Phys., 488 (2023), Paper No. 112247.
doi: 10.1016/j.jcp.2023.112247.
|