\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents
Early Access

Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Early Access articles via the “Early Access” tab for the selected journal.

On the stabilization of a kinetic model by feedback-like control fields in a Monte Carlo framework

  • *Corresponding author: Jan Bartsch

    *Corresponding author: Jan Bartsch 

The first author is partially supported by Deutsche Forschungsgemeinschaft (DFG) within SFB 1432, Project-ID 425217212

Abstract Full Text(HTML) Figure(6) / Table(1) Related Papers Cited by
  • The construction of feedback-like control fields for a kinetic model in phase space is investigated. The purpose of these controls is to drive an initial density of particles in the phase space to reach a desired cyclic trajectory and follow it in a stable way. For this purpose, an ensemble optimal control problem governed by the kinetic model is formulated in a way that is amenable to a Monte Carlo approach. The proposed formulation allows to define a one-shot solution procedure consisting in a backward solve of an augmented adjoint kinetic model. Results of numerical experiments demonstrate the effectiveness of the proposed control strategy.

    Mathematics Subject Classification: Primary: 49M05, 49M41, 65C05, 65K10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Quiver plot of the calculated control. The solid ellipse is the curve $ z_D(t) $, $ t\in[0, T] $. The arrows are given by the scaled vector $ (v, u(x, v, t))^T $

    Figure 2.  Evolution of $ f $ starting from a uniform initial distribution and subject to the control field $ u $

    Figure 3.  Control field and corresponding distribution of particles at final time using different values of the denoising parameter $ c_s $

    Figure 4.  Control field at final time for different values of the control weight $ \nu $

    Figure 5.  Averaged control $ \bar{u} $ defined in (17); quiver and 3D plot

    Figure 6.  Evolution of $ f $, starting with an initial Gaussian distribution and subject to the averaged control $ \bar{u} $. Time ordering as in Figure 1

    Table 1.  Numerical and physical parameters

    Symbol Value Symbol Value
    $ N_t $ 100 $ \Delta t $ $ 0.025 $
    $ N_x \times N_v $ [-] $ 50 \times 50 $ $ v_{\max} $ $ 5 $
    $ p_{\max} $ $ 10.0 $ $ \Delta v $ $ 0.2 $
    $ \Delta p $ $ 0.2 $ $ N_f $ $ 10^4 $
    $ \gamma $ $ 0.9999 $ $ \alpha $ $ 0.5 $
    $ \nu $ $ 1 $ $ C_\theta $, $ C_\varphi $ $ 10^3 $
    $ c_s $ $ 0.5 $ $ N_q^{N_t} $ $ 6 \cdot 10^2 $
     | Show Table
    DownLoad: CSV
  • [1] G. AlbiY.-P. ChoiM. Fornasier and D. Kalise, Mean field control hierarchy, Appl. Math. Optim., 76 (2017), 93-135.  doi: 10.1007/s00245-017-9429-x.
    [2] J. Bartsch and A. Borzì, MOCOKI: A Monte Carlo approach for optimal control in the force of a linear kinetic model, Comput. Phys. Commun., 266 (2021), 108030, 13 pp. doi: 10.1016/j.cpc.2021.108030.
    [3] J. Bartsch, A. Borzì, F. Fanelli and S. Roy, A theoretical investigation of Brockett's ensemble optimal control problems, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 162, 34 pp. doi: 10.1007/s00526-019-1604-2.
    [4] J. BartschG. Nastasi and A. Borzì, Optimal control of the Keilson-Storer master equation in a Monte Carlo framework, J. Comput. Theor. Transp., 50 (2021), 454-482.  doi: 10.1080/23324309.2021.1896552.
    [5] R. Beals and V. Protopopescu, Abstract time-dependent transport equations, J. Math. Anal. Appl., 121 (1987), 370-405.  doi: 10.1016/0022-247X(87)90252-6.
    [6] R. BellmanDynamic Programming, Princeton University Press, 1957. 
    [7] P. R. BermanJ. E. M. Haverkort and J. P. Woerdman, Collision kernels and transport coefficients, Phys. Rev. A, 34 (1986), 4647-4656. 
    [8] P. Berman and  V. MalinovskyPrinciples of Laser Spectroscopy and Quantum Optics, Princeton University Press, 2010. 
    [9] G. E. P. Box and M. E. Muller, A note on the generation of random normal deviates, Ann. Math. Statist., 29 (1958), 610-611. 
    [10] R. W. Brockett, Minimum attention control, Proceedings of the 36th IEEE Conference on Decision and Control, 3 (1997), 2628-2632. 
    [11] R. W. Brockett, Optimal Control of the Liouville Equation, In AMS/IP Stud. Adv. Math., 39 American Mathematical Society, Providence, RI, 2007. doi: 10.1090/amsip/039/02.
    [12] R. W. Brockett, Notes on the control of the Liouville equation, Control of Partial Differential Equations, 2048 (2012), 101-129.  doi: 10.1007/978-3-642-27893-8_2.
    [13] R. Caflisch, D. Silantyev and Y. Yang, Adjoint DSMC for nonlinear Boltzmann equation constrained optimization, J. Comput. Phys., 439 (2021), Paper No. 110404, 29 pp. doi: 10.1016/j.jcp.2021.110404.
    [14] J. Chen and M.-Z. Yang, Linear transport equation with specular reflection boundary condition, Transport Theory Statist. Phys., 20 (1991), 281-306.  doi: 10.1080/00411459108203907.
    [15] G. Fabbri, F. Gozzi and A. Świech, Stochastic Optimal Control in Infinite Dimension: Dynamic Programming and HJB Equations, Probability Theory and Stochastic Modelling. Springer International Publishing, 2017. doi: 10.1007/978-3-319-53067-3.
    [16] M. F. GelinA. P. BlokhinV. A. Tolkachev and W. Domcke, Microscopic derivation of the Keilson - Storer master equation, J. Chem. Phys., 462 (2015), 35-40. 
    [17] M. F. Gelin and D. S. Kosov, Molecular reorientation in hydrogen-bonding liquids: Through algebraic t - 3/2 relaxation toward exponential decay, J. Chem. Phys., 124 (2006), 144514. 
    [18] E. HairerC. Lubich and G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method, Acta Numer., 12 (2003), 399-450.  doi: 10.1017/S0962492902000144.
    [19] M. B. Horowitz, A. Damle and J. W. Burdick, Linear hamilton jacobi bellman equations in high dimensions, In 53rd IEEE Conference on Decision and Control, IEEE, (2014), 5880-5887.
    [20] C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Rev. Mod. Phys., 55 (1983), 645-705. 
    [21] J. Keilson and J. E. Storer, On Brownian motion, Boltzmann's equation, and the Fokker-Planck equation, Quart. Appl. Math., 10 (1952), 243-253.  doi: 10.1090/qam/50216.
    [22] D. S. Kosov, Telegraph noise in Markovian master equation for electron transport through molecular junctions, J. Chem. Phys., 148 (2018).
    [23] K. Lakshmi, R. Parvathy, S. Soumya and K. Soman, Image denoising solutions using heat diffusion equation, In 2012 International Conference on Power, Signals, Controls and Computation, IEEE, (2012), 1-5.
    [24] K. Latrach and B. Lods, Spectral analysis of transport equations with bounce-back boundary conditions, Math. Methods Appl. Sci., 32 (2009), 1325-1344.  doi: 10.1002/mma.1088.
    [25] Q. LiL. Wang and Y. Yang, Monte Carlo gradient in optimization constrained by radiative transport equation, SIAM J. Numer. Anal., 61 (2023), 2744-2774.  doi: 10.1137/22M1524515.
    [26] R. D. SkeelG. Zhang and T. Schlick, A family of symplectic integrators: Stability, accuracy, and molecular dynamics applications, SIAM J. Sci. Comput., 18 (1997), 203-222.  doi: 10.1137/S1064827595282350.
    [27] J. Speyer and R. Evans, A second variational theory for optimal periodic processes, IEEE Trans. Automat. Contr., 29 (1984), 138-148.  doi: 10.1109/TAC.1984.1103482.
    [28] M. L. Strekalov, Population relaxation of highly rotationally excited molecules at collisions, Chem. Phys. Lett., 548 (2012), 7-11. 
    [29] H. TranJ.-M. HartmannF. Chaussard and M. Gupta, An isolated line-shape model based on the Keilson-Storer function for velocity changes. ⅱ. molecular dynamics simulations and the q(1) lines for pure h2, J. Chem. Phys., 131 (2009), 154303. 
    [30] C. V. M. van der Mee, Trace theorems and kinetic equations for non-divergence-free external forces, Appl. Anal., 41 (1991), 89-110.  doi: 10.1080/00036819108840017.
    [31] L. Verlet, Computer "experiments" on classical fluids. Ⅰ. Thermodynamical properties of Lennard-Jones molecules, Physical Review, 159 (1967), 98. 
    [32] Y. Yang, D. Silantyev and R. Caflisch, Adjoint DSMC for nonlinear spatially-homogeneous Boltzmann equation with a general collision model, J. Comput. Phys., 488 (2023), Paper No. 112247. doi: 10.1016/j.jcp.2023.112247.
  • 加载中

Figures(6)

Tables(1)

SHARE

Article Metrics

HTML views(410) PDF downloads(116) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return