\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability of spherical models in MOND

Joachim Frenkler is supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer RE 885/4-1.

Abstract / Introduction Full Text(HTML) Figure(3) Related Papers Cited by
  • We prove the non-linear stability of a large class of spherically symmetric equilibrium solutions of both the collisionless Boltzmann equation and of the Euler equations in MOND. This is the first such stability result that is proven with mathematical rigour in MOND. While we strive to prove our stability theorems, we develop new, genuinely Mondian ideas on how arising mathematical difficulties can be solved. At some points it was necessary to restrict our analysis to spherical symmetry. We discuss every point where this extra assumption was necessary and outline which efforts must be undertaken to get along without it in future works. In the end we show in the example of a polytropic model how our stability result can be applied.

    Mathematics Subject Classification: Primary: 35Q83, 35Q31; Secondary: 85A05, 35Q75.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  We calculated numerically the solution $ \rho_s $ of (41) with central value $ \rho_s(0) = s $. In the above figure we plotted the mass $ M_s $ of $ \rho_s $ against the central value $ s\in[0.01, 1] $. We see that in the depicted range for every given mass $ M>0 $ there is only one $ s $ such that $ \rho_s $ has mass $ M $. The behaviour of the graph of $ M_s $ for $ s $ very small (the deep MOND limit) and for $ s $ very large (the Newtonian limit) is given in Figure 2

    Figure 2.  The two diagrams show the same information as Figure 1 but with different ranges. In the left diagram, we zoomed in on the range $ s\in[0.0001, 0.01] $. This is the deep MOND limit. In this range the graph of $ M_s $ is approximately a parabola. For comparison we plotted (dashed line) also the parabola $ 1.06\, s^2 $. In the right diagram, we zoomed out on the range $ s\in[10, 1000] $. This is the Newtonian limit. There the graph of $ M_s $ becomes a straight line. Putting the informations from Figure 1 and Figure 2 together, we conclude that for every given mass $ M>0 $ there is exactly one $ s>0 $ such that $ \rho_s $ has mass $ M $

    Figure 3.  Choice of $ \alpha_0 $

  • [1] I. Banik, M. Milgrom and H. Zhao, Toomre stability of disk galaxies in quasi-linear MOND, preprint, 2018. arXiv: 1808.10545.
    [2] I. BanikC. PittordisW. SutherlandB. FamaeyR. IbataS. Mieske and H. Zhao, Strong constraints on the gravitational law from Gaia DR3 wide binaries, Mon. Notices Royal Astron. Soc., 527 (2024), 4573-4615.  doi: 10.1093/mnras/stad3393.
    [3] K.-H. Chae, Breakdown of the Newton-Einstein standard gravity at low acceleration in internal dynamics of wide binary stars, Astrophys. J., 952 (2023), 128.  doi: 10.3847/1538-4357/ace101.
    [4] L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, Graduate Studies in Mathematics, American Math. Soc., Providence, 2010.
    [5] B. Famaey and S. S. McGaugh, Modified Newtonian Dynamics (MOND): Observational phenomenology and relativistic extensions, Living Reviews in Relativity, 15 (2012), 10.  doi: 10.12942/lrr-2012-10.
    [6] J. Frenkler, A mathematical foundation for QUMOND, preprint, 2024. arXiv: 2403.13498.
    [7] Gaia Collaboration, The Gaia mission, Astron. Astrophys., 595 (2016), A1.
    [8] Gaia Collaboration, Gaia Data Release 3. Summary of the content and survey properties, Astron. Astrophys., 674 (2023), A1.
    [9] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, 2$^{nd}$ edition, Springer Monographs in Mathematics, Springer, New York, 2011.
    [10] B. GidasW.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Communications in Mathematical Physics, 68 (1979), 209-243.  doi: 10.1007/BF01221125.
    [11] Y. Guo and G. Rein, Existence and stability of Camm type steady states in galactic dynamics, Indiana Univ. Math. J., 48 (1999), 1237-1255.  doi: 10.1512/iumj.1999.48.1819.
    [12] X. Hernandez, Internal kinematics of Gaia DR3 wide binaries: Anomalous behaviour in the low acceleration regime, Mon. Notices Royal Astron. Soc., 525 (2023), 1401-1415.  doi: 10.1093/mnras/stad2306.
    [13] R. IbataA. SollimaC. NipotiM. BellazziniS. C. Chapman and E. Dalessandro, Polytropic model fits to the globular cluster NGC 2419 in modified Newtonian dynamics, Astrophys. J., 743 (2011), 43.  doi: 10.1088/0004-637X/743/1/43.
    [14] M. LemouF. Méhats and P. Raphaël, Orbital stability of spherical galactic models, Inventiones Mathematicae, 187 (2012), 145-194.  doi: 10.1007/s00222-011-0332-9.
    [15] E. Lieb and M. Loss, Analysis, 2$^{nd}$ edition, American Mathematical Society, Providence, 2001.
    [16] F. LüghausenB. Famaey and P. Kroupa, Phantom of RAMSES (POR): A new Milgromian dynamics N-body code, Canadian Journal of Physics, 93 (2015), 232-241.  doi: 10.1139/cjp-2014-0168.
    [17] S. McGaugh, Predictions and outcomes for the dynamics of rotating galaxies, Galaxies, 8 (2020), 35.  doi: 10.3390/galaxies8020035.
    [18] M. Milgrom, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J., 270 (1983), 365-370.  doi: 10.1086/161130.
    [19] M. Milgrom, On stability of galactic disks in the modified dynamics and the distribution of their mean surface-brightness, Astrophys. J., 338 (1989), 121.  doi: 10.1086/167184.
    [20] M. Milgrom, Quasi-linear formulation of MOND, Mon. Notices Royal Astron. Soc., 403 (2010), 886-895.  doi: 10.1111/j.1365-2966.2009.16184.x.
    [21] M. Milgrom, Deep-MOND polytropes, Phys. Rev. D, 103 (2021), 044043.  doi: 10.1103/PhysRevD.103.044043.
    [22] C. NipotiL. Ciotti and P. Londrillo, Radial-orbit instability in modified Newtonian dynamics, Mon. Notices Royal Astron. Soc., 414 (2011), 3298-3306.  doi: 10.1111/j.1365-2966.2011.18632.x.
    [23] G. Rein, Collisionless kinetic equations from astrophysics – The Vlasov-Poisson system, Handbook of Differential Equations: Evolutionary Equations, III (2007), 383-476. 
    [24] G. Rein, Galactic dynamics in MOND-existence of equilibria with finite mass and compact support, Kinetic and Related Models, 8 (2015), 381-394.  doi: 10.3934/krm.2015.8.381.
    [25] G. Rein and Y. Guo, Stable models of elliptical galaxies, Mon. Notices Royal Astron. Soc., 344 (2003), 1296-1306.  doi: 10.1046/j.1365-8711.2003.06920.x.
    [26] R. H. Sanders, NGC 2419 does not challenge MOND, Part 2, Mon. Notices Royal Astron. Soc., 422 (2012), L21-L23. doi: 10.1111/j.1745-3933.2012.01227.x.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(627) PDF downloads(181) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return