\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Local well-posedness of the Vlasov-Poisson-Landau system and related models

Patrick Flynn was partially supported by the National Science Foundation Graduate Research Fellowship, Grant No. 2040433. Thank you to Yan Guo, Benoît Pausader and Timur Yastrzhembskiy for helpful conversations and suggestions.

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We prove local well-posedness for the Vlasov-Poisson-Landau system and the variant with massless electrons in a 3D periodic spatial domain for large initial data. This is accomplished by propagating weighted anisotropic $ L^2 $-based Sobolev norms. In the case of the massless electron system, we also carry out an analysis of the Poincaré-Poisson system. This is a companion paper to the author's previous work with Yan Guo [6].

    Mathematics Subject Classification: Primary: 35Q83, 82C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. BardosF. GolseT. T. Nguyen and R. Sentis, The Maxwell–Boltzmann approximation for ion kinetic modeling, Physica D: Nonlinear Phenomena, 376/377 (2018), 94-107.  doi: 10.1016/j.physd.2017.10.014.
    [2] F. Bouchut, Global weak solution of the Vlasov–Poisson system for small electrons mass, Communications in Partial Differential Equations, 16 (1991), 1337-1365.  doi: 10.1080/03605309108820802.
    [3] S. Chaturvedi, Local existence for the Landau equation with hard potentials, SIAM J. Math. Anal., 55 (2023), 5345-5385. 
    [4] P. Degond and B. Lucquin-Desreux, The asymptotics of collision operators for two species of particles of disparate masses, Mathematical Models and Methods in Applied Sciences, 6 (1996), 405-436.  doi: 10.1142/S0218202596000158.
    [5] P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases, Transport Theory and Statistical Physics, 25 (1996), 595-633.  doi: 10.1080/00411459608222915.
    [6] P. Flynn and Y. Guo, The massless electron limit of the Vlasov–Poisson–Landau system, Communications in Mathematical Physics, 405 (2024), Paper No. 27, 73 pp. doi: 10.1007/s00220-023-04901-8.
    [7] A. Gagnebin and M. Iacobelli, Landau damping on the torus for the Vlasov-Poisson system with massless electrons, Journal of Differential Equations, 376 (2023), 154-203.  doi: 10.1016/j.jde.2023.08.020.
    [8] M. Griffin-Pickering and M. Iacobelli, Global strong solutions in $\mathbf R^3$ for ionic Vlasov-Poisson systems, Kinetic & Related Models, 14 (2021), 571. 
    [9] N. Guillen and L. Silvestre, The Landau equation does not blow up, arXiv preprint, arXiv: 2311.09420, 2023.
    [10] Y. Guo and J. Jang, Global Hilbert expansion for the vlasov-poisson-boltzmann system, Communications in Mathematical Physics, 299 (2010), 469-501.  doi: 10.1007/s00220-010-1089-5.
    [11] D. Han-Kwan, Quasineutral limit of the Vlasov-Poisson system with massless electrons, Communications in Partial Differential Equations, 36 (2011), 1385-1425.  doi: 10.1080/03605302.2011.555804.
    [12] L. He and X. Yang, Well-posedness and asymptotics of grazing collisions limit of Boltzmann equation with Coulomb interaction, SIAM Journal on Mathematical Analysis, 46 (2014), 4104-4165.  doi: 10.1137/140965983.
    [13] C. HendersonS. Snelson and A. Tarfulea, Local existence, lower mass bounds, and a new continuation criterion for the Landau equation, Journal of Differential Equations, 266 (2019), 1536-1577.  doi: 10.1016/j.jde.2018.08.005.
    [14] C. Henderson, S. Snelson and A. Tarfulea, Local solutions of the Landau equation with rough, slowly decaying initial data, In Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Elsevier, 37 (2020), 1345-1377. doi: 10.1016/j.anihpc.2020.04.004.
    [15] M. Herda, On massless electron limit for a multispecies kinetic system with external magnetic field, Journal of Differential Equations, 260 (2016), 7861-7891.  doi: 10.1016/j.jde.2016.02.005.
    [16] L. Huang, Q.-H. Nguyen and Y. Xu., Nonlinear Landau damping for the 2d Vlasov-Poisson system with massless electrons around penrose-stable equilibria, arXiv preprint, arXiv: 2206.11744, 2022.
    [17] N. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Grad. Stud. Math., 96, American Mathematical Society, Providence, RI, 2008.
    [18] G. Métivier, Para-differential calculus and applications to the cauchy problem for nonlinear systems, CRM Series, 5, Edizioni della Normale, Pisa, 2008.
  • 加载中
SHARE

Article Metrics

HTML views(675) PDF downloads(204) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return