We prove local well-posedness for the Vlasov-Poisson-Landau system and the variant with massless electrons in a 3D periodic spatial domain for large initial data. This is accomplished by propagating weighted anisotropic $ L^2 $-based Sobolev norms. In the case of the massless electron system, we also carry out an analysis of the Poincaré-Poisson system. This is a companion paper to the author's previous work with Yan Guo [6].
Citation: |
[1] |
C. Bardos, F. Golse, T. T. Nguyen and R. Sentis, The Maxwell–Boltzmann approximation for ion kinetic modeling, Physica D: Nonlinear Phenomena, 376/377 (2018), 94-107.
doi: 10.1016/j.physd.2017.10.014.![]() ![]() ![]() |
[2] |
F. Bouchut, Global weak solution of the Vlasov–Poisson system for small electrons mass, Communications in Partial Differential Equations, 16 (1991), 1337-1365.
doi: 10.1080/03605309108820802.![]() ![]() ![]() |
[3] |
S. Chaturvedi, Local existence for the Landau equation with hard potentials, SIAM J. Math. Anal., 55 (2023), 5345-5385.
![]() ![]() |
[4] |
P. Degond and B. Lucquin-Desreux, The asymptotics of collision operators for two species of particles of disparate masses, Mathematical Models and Methods in Applied Sciences, 6 (1996), 405-436.
doi: 10.1142/S0218202596000158.![]() ![]() ![]() |
[5] |
P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases, Transport Theory and Statistical Physics, 25 (1996), 595-633.
doi: 10.1080/00411459608222915.![]() ![]() ![]() |
[6] |
P. Flynn and Y. Guo, The massless electron limit of the Vlasov–Poisson–Landau system, Communications in Mathematical Physics, 405 (2024), Paper No. 27, 73 pp.
doi: 10.1007/s00220-023-04901-8.![]() ![]() ![]() |
[7] |
A. Gagnebin and M. Iacobelli, Landau damping on the torus for the Vlasov-Poisson system with massless electrons, Journal of Differential Equations, 376 (2023), 154-203.
doi: 10.1016/j.jde.2023.08.020.![]() ![]() ![]() |
[8] |
M. Griffin-Pickering and M. Iacobelli, Global strong solutions in $\mathbf R^3$ for ionic Vlasov-Poisson systems, Kinetic & Related Models, 14 (2021), 571.
![]() |
[9] |
N. Guillen and L. Silvestre, The Landau equation does not blow up, arXiv preprint, arXiv: 2311.09420, 2023.
![]() |
[10] |
Y. Guo and J. Jang, Global Hilbert expansion for the vlasov-poisson-boltzmann system, Communications in Mathematical Physics, 299 (2010), 469-501.
doi: 10.1007/s00220-010-1089-5.![]() ![]() ![]() |
[11] |
D. Han-Kwan, Quasineutral limit of the Vlasov-Poisson system with massless electrons, Communications in Partial Differential Equations, 36 (2011), 1385-1425.
doi: 10.1080/03605302.2011.555804.![]() ![]() ![]() |
[12] |
L. He and X. Yang, Well-posedness and asymptotics of grazing collisions limit of Boltzmann equation with Coulomb interaction, SIAM Journal on Mathematical Analysis, 46 (2014), 4104-4165.
doi: 10.1137/140965983.![]() ![]() ![]() |
[13] |
C. Henderson, S. Snelson and A. Tarfulea, Local existence, lower mass bounds, and a new continuation criterion for the Landau equation, Journal of Differential Equations, 266 (2019), 1536-1577.
doi: 10.1016/j.jde.2018.08.005.![]() ![]() ![]() |
[14] |
C. Henderson, S. Snelson and A. Tarfulea, Local solutions of the Landau equation with rough, slowly decaying initial data, In Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Elsevier, 37 (2020), 1345-1377.
doi: 10.1016/j.anihpc.2020.04.004.![]() ![]() ![]() |
[15] |
M. Herda, On massless electron limit for a multispecies kinetic system with external magnetic field, Journal of Differential Equations, 260 (2016), 7861-7891.
doi: 10.1016/j.jde.2016.02.005.![]() ![]() ![]() |
[16] |
L. Huang, Q.-H. Nguyen and Y. Xu., Nonlinear Landau damping for the 2d Vlasov-Poisson system with massless electrons around penrose-stable equilibria, arXiv preprint, arXiv: 2206.11744, 2022.
![]() |
[17] |
N. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Grad. Stud. Math., 96, American Mathematical Society, Providence, RI, 2008.
![]() ![]() |
[18] |
G. Métivier, Para-differential calculus and applications to the cauchy problem for nonlinear systems, CRM Series, 5, Edizioni della Normale, Pisa, 2008.
![]() ![]() |