We investigate a class of Vlasov-type kinetic flocking models featuring nonlinear velocity alignment. Our primary objective is to rigorously derive the hydrodynamic limit leading to the compressible Euler system with nonlinear alignment. This study builds upon the work by Figalli and Kang [8], which addressed the scenario of linear velocity alignment using the relative entropy method. The introduction of nonlinearity gives rise to an additional discrepancy in the alignment term during the limiting process. To effectively handle this discrepancy, we employ the monokinetic ansatz in conjunction with the relative entropy approach. Furthermore, our analysis reveals distinct nonlinear alignment behaviors between the kinetic and hydrodynamic systems, particularly evident in the isothermal regime.
Citation: |
[1] |
M. Black and C. Tan, Asymptotic behaviors for the compressible Euler system with nonlinear velocity alignment, Journal of Differential Equations, 380 (2024), 198-227.
doi: 10.1016/j.jde.2023.10.044.![]() ![]() ![]() |
[2] |
J. A. Carrillo, Y.-P. Choi and M. Hauray, Local well-posedness of the generalized Cucker-Smale model with singular kernels, ESAIM: Proceedings and Surveys, 47 (2014), 17-35.
doi: 10.1051/proc/201447002.![]() ![]() ![]() |
[3] |
J. A. Carrillo, Y.-P. Choi, E. Tadmor and C. Tan, Critical thresholds in 1D Euler equations with non-local forces, Mathematical Models and Methods in Applied Sciences, 26 (2016), 185-206.
doi: 10.1142/S0218202516500068.![]() ![]() ![]() |
[4] |
Y.-P. Choi and J. Jung, Local well-posedness for the kinetic Cucker–Smale model with super-Coulombic communication weights, Journal of Differential Equations, 366 (2023), 807-832.
doi: 10.1016/j.jde.2023.05.021.![]() ![]() ![]() |
[5] |
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842.![]() ![]() ![]() |
[6] |
T. Do, A. Kiselev, L. Ryzhik and C. Tan, Global regularity for the fractional Euler alignment system, Archive for Rational Mechanics and Analysis, 228 (2018), 1-37.
doi: 10.1007/s00205-017-1184-2.![]() ![]() ![]() |
[7] |
M. Fabisiak and J. Peszek, Inevitable monokineticity of strongly singular alignment, Mathematische Annalen, 390 (2024), 589–637.
doi: 10.1007/s00208-023-02776-7.![]() ![]() ![]() |
[8] |
A. Figalli and M.-J. Kang, A rigorous derivation from the kinetic Cucker–Smale model to the pressureless Euler system with nonlocal alignment, Analysis and PDE, 12 (2019), 843-866.
doi: 10.2140/apde.2019.12.843.![]() ![]() ![]() |
[9] |
S.-Y. Ha, T. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Transactions on Automatic Control, 55 (2010), 1679-1683.
doi: 10.1109/TAC.2010.2046113.![]() ![]() ![]() |
[10] |
S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models, 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415.![]() ![]() ![]() |
[11] |
M.-J. Kang and A. F. Vasseur, Asymptotic analysis of Vlasov-type equations under strong local alignment regime, Mathematical Models and Methods in Applied Sciences, 25 (2015), 2153-2173.
doi: 10.1142/S0218202515500542.![]() ![]() ![]() |
[12] |
T. K. Karper, A. Mellet and K. Trivisa, Existence of weak solutions to kinetic flocking models, SIAM Journal on Mathematical Analysis, 45 (2013), 215-243.
doi: 10.1137/120866828.![]() ![]() ![]() |
[13] |
T. K. Karper, A. Mellet and K. Trivisa, On strong local alignment in the kinetic Cucker-Smale model, In Hyperbolic Conservation Laws and Related Analysis with Applications, Springer, 2014,227-242.
doi: 10.1007/978-3-642-39007-4_11.![]() ![]() ![]() |
[14] |
T. K. Karper, A. Mellet and K. Trivisa, Hydrodynamic limit of the kinetic Cucker–Smale flocking model, Mathematical Models and Methods in Applied Sciences, 25 (2015), 131-163.
doi: 10.1142/S0218202515500050.![]() ![]() ![]() |
[15] |
J.-H. Kim and J.-H. Park, Complete characterization of flocking versus nonflocking of Cucker–Smale model with nonlinear velocity couplings, Chaos, Solitons and Fractals, 134 (2020), 109714, 12 pp.
doi: 10.1016/j.chaos.2020.109714.![]() ![]() ![]() |
[16] |
A. Kiselev and C. Tan, Global regularity for 1D Eulerian dynamics with singular interaction forces, SIAM Journal on Mathematical Analysis, 50 (2018), 6208-6229.
doi: 10.1137/17M1141515.![]() ![]() ![]() |
[17] |
D. Lear and R. Shvydkoy, Existence and stability of unidirectional flocks in hydrodynamic Euler alignment systems, Analysis and PDE, 15 (2022), 175-196.
doi: 10.2140/apde.2022.15.175.![]() ![]() ![]() |
[18] |
T. M. Leslie and C. Tan, Sticky particle Cucker-Smale dynamics and the entropic selection principle for the 1D Euler-alignment system, Communications in Partial Differential Equations, 48 (2023), 753-791.
doi: 10.1080/03605302.2023.2202720.![]() ![]() ![]() |
[19] |
Y. Li, Q. Miao, C. Tan and L. Xue, Global well-posedness and refined regularity criterion for the uni-directional Euler-alignment system, International Mathematics Research Notices, 2024 (2024), 14393-14422.
doi: 10.1093/imrn/rnae246.![]() ![]() |
[20] |
J. Lu and E. Tadmor, Hydrodynamic alignment with pressure II. Multi-species, Quarterly of Applied Mathematics, 81 (2023), 259-279.
doi: 10.1090/qam/1639.![]() ![]() ![]() |
[21] |
I. Markou, Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings, Discrete and Continuous Dynamical Systems, 38 (2018), 5245-5260.
doi: 10.3934/dcds.2018232.![]() ![]() ![]() |
[22] |
Q. Miao, C. Tan and L. Xue, Global regularity for a 1D Euler-alignment system with misalignment, Mathematical Models and Methods in Applied Sciences, 31 (2021), 473-524.
doi: 10.1142/S021820252150010X.![]() ![]() ![]() |
[23] |
P. B. Mucha and J. Peszek, The Cucker–Smale equation: Singular communication weight, measure-valued solutions and weak-atomic uniqueness, Archive for Rational Mechanics and Analysis, 227 (2018), 273-308.
doi: 10.1007/s00205-017-1160-x.![]() ![]() ![]() |
[24] |
D. Poyato and J. Soler, Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker–Smale models, Mathematical Models and Methods in Applied Sciences, 27 (2017), 1089-1152.
doi: 10.1142/S0218202517400103.![]() ![]() ![]() |
[25] |
R. Shvydkoy, Dynamics and Analysis of Alignment Models of Collective Behavior, Springer, 2021.
doi: 10.1007/978-3-030-68147-0.![]() ![]() ![]() |
[26] |
R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing, Transactions of Mathematics and its Applications, 1 (2017), tnx001, 26 pp.
doi: 10.1093/imatrm/tnx001.![]() ![]() ![]() |
[27] |
R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing II: Flocking, Discrete & Continuous Dynamical Systems, 37 (2017), 5503-5520.
doi: 10.3934/dcds.2017239.![]() ![]() ![]() |
[28] |
E. Tadmor, Swarming: Hydrodynamic alignment with pressure, Bulletin of the American Mathematical Society, 60 (2023), 285-325.
doi: 10.1090/bull/1793.![]() ![]() ![]() |
[29] |
E. Tadmor and C. Tan, Critical thresholds in flocking hydrodynamics with non-local alignment, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130401, 22 pp.
doi: 10.1098/rsta.2013.0401.![]() ![]() ![]() |
[30] |
C. Tan, On the Euler-alignment system with weakly singular communication weights, Nonlinearity, 33 (2020), 1907-1924.
doi: 10.1088/1361-6544/ab6c39.![]() ![]() ![]() |
[31] |
C. Tan, Eulerian dynamics in multidimensions with radial symmetry, SIAM Journal on Mathematical Analysis, 53 (2021), 3040-3071.
doi: 10.1137/20M1358682.![]() ![]() ![]() |
[32] |
G. Wen, Z. Duan, Z. Li and G. Chen, Flocking of multi-agent dynamical systems with intermittent nonlinear velocity measurements, International Journal of Robust and Nonlinear Control, 22 (2012), 1790-1805.
doi: 10.1002/rnc.1784.![]() ![]() ![]() |