2004, 1(1): 147-159. doi: 10.3934/mbe.2004.1.147

Biological computing with diffusion and excitable calcium stores

1. 

Department of Physics, Emory University, Maths/Science Center, 400 Dowman Drive, Atlanta, GA 30322, United States

2. 

Department of Physiology and Biophysics, Dalhousie University, Halifax NS, Canada

3. 

Department of Physics, Emory University, Atlanta, GA 30322, United States

Received  February 2004 Revised  March 2004 Published  March 2004

Intracellular signaling often employs excitable stores of calcium coupled by diffusion. We investigate the ability of various geometric configurations of such excitable stores to generate a complete set of logic gates for computation. We also describe how the mechanism of excitable calcium-induced calcium release can be used for constructing coincidence detectors for biological signals.
Citation: H. G. E. Hentschel, Alan Fine, C. S. Pencea. Biological computing with diffusion and excitable calcium stores. Mathematical Biosciences & Engineering, 2004, 1 (1) : 147-159. doi: 10.3934/mbe.2004.1.147
[1]

Pamela A. Marshall, Eden E. Tanzosh, Francisco J. Solis, Haiyan Wang. Response of yeast mutants to extracellular calcium variations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 439-453. doi: 10.3934/dcdsb.2009.12.439

[2]

Bogdan Kazmierczak, Zbigniew Peradzynski. Calcium waves with mechano-chemical couplings. Mathematical Biosciences & Engineering, 2013, 10 (3) : 743-759. doi: 10.3934/mbe.2013.10.743

[3]

Christos V. Nikolopoulos. Mathematical modelling of a mushy region formation during sulphation of calcium carbonate. Networks & Heterogeneous Media, 2014, 9 (4) : 635-654. doi: 10.3934/nhm.2014.9.635

[4]

Amparo Gil, Virginia González-Vélez, Javier Segura, Luis Miguel Gutiérrez. A theoretical study of factors influencing calcium-secretion coupling in a presynaptic active zone model. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1027-1043. doi: 10.3934/mbe.2014.11.1027

[5]

Jiying Ma, Dongmei Xiao. Nonlinear dynamics of a mathematical model on action potential duration and calcium transient in paced cardiac cells. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2377-2396. doi: 10.3934/dcdsb.2013.18.2377

[6]

Xin Li, Xingfu Zou. On a reaction-diffusion model for sterile insect release method with release on the boundary. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2509-2522. doi: 10.3934/dcdsb.2012.17.2509

[7]

Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031

[8]

M. B. A. Mansour. Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 83-91. doi: 10.3934/mbe.2009.6.83

[9]

Anotida Madzvamuse, Raquel Barreira. Domain-growth-induced patterning for reaction-diffusion systems with linear cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2775-2801. doi: 10.3934/dcdsb.2018163

[10]

Yasumasa Nishiura, Takashi Teramoto, Xiaohui Yuan. Heterogeneity-induced spot dynamics for a three-component reaction-diffusion system. Communications on Pure & Applied Analysis, 2012, 11 (1) : 307-338. doi: 10.3934/cpaa.2012.11.307

[11]

Matthew S. Keegan, Berta Sandberg, Tony F. Chan. A multiphase logic framework for multichannel image segmentation. Inverse Problems & Imaging, 2012, 6 (1) : 95-110. doi: 10.3934/ipi.2012.6.95

[12]

Peter W. Bates, Yu Liang, Alexander W. Shingleton. Growth regulation and the insulin signaling pathway. Networks & Heterogeneous Media, 2013, 8 (1) : 65-78. doi: 10.3934/nhm.2013.8.65

[13]

Masayuki Sato, Naoki Fujita, A. J. Sievers. Logic operations demonstrated with localized vibrations in a micromechanical cantilever array. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1287-1298. doi: 10.3934/dcdss.2011.4.1287

[14]

Hongyu He, Naohiro Kato. Equilibrium submanifold for a biological system. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1429-1441. doi: 10.3934/dcdss.2011.4.1429

[15]

Alessia Marigo, Benedetto Piccoli. A model for biological dynamic networks. Networks & Heterogeneous Media, 2011, 6 (4) : 647-663. doi: 10.3934/nhm.2011.6.647

[16]

Dieter Armbruster, Michael Herty, Xinping Wang, Lindu Zhao. Integrating release and dispatch policies in production models. Networks & Heterogeneous Media, 2015, 10 (3) : 511-526. doi: 10.3934/nhm.2015.10.511

[17]

Boris Baeumer, Lipika Chatterjee, Peter Hinow, Thomas Rades, Ami Radunskaya, Ian Tucker. Predicting the drug release kinetics of matrix tablets. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 261-277. doi: 10.3934/dcdsb.2009.12.261

[18]

David S. Ross, Christina Battista, Antonio Cabal, Khamir Mehta. Dynamics of bone cell signaling and PTH treatments of osteoporosis. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2185-2200. doi: 10.3934/dcdsb.2012.17.2185

[19]

Mingxing Zhou, Jing Liu, Shuai Wang, Shan He. A comparative study of robustness measures for cancer signaling networks. Big Data & Information Analytics, 2017, 2 (1) : 87-96. doi: 10.3934/bdia.2017011

[20]

Jaroslaw Smieja, Malgorzata Kardynska, Arkadiusz Jamroz. The meaning of sensitivity functions in signaling pathways analysis. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2697-2707. doi: 10.3934/dcdsb.2014.19.2697

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]