2004, 1(2): 223-241. doi: 10.3934/mbe.2004.1.223

Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches

1. 

Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC 27695, United States, United States, United States

2. 

Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC 27695-8212

Published  July 2004

We formulate a dynamic mathematical model that describes the interaction of the immune system with the human immunodeficiency virus (HIV) and that permits drug ''cocktail'' therapies. We derive HIV therapeutic strategies by formulating and analyzing an optimal control problem using two types of dynamic treatments representing reverse transcriptase (RT) inhibitors and protease inhibitors (PIs). Continuous optimal therapies are found by solving the corresponding optimality systems. In addition, using ideas from dynamic programming, we formulate and derive suboptimal structured treatment interruptions (STI) in antiviral therapy that include drug-free periods of immune-mediated control of HIV. Our numerical results support a scenario in which STI therapies can lead to long-term control of HIV by the immune response system after discontinuation of therapy.
Citation: B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran. Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences & Engineering, 2004, 1 (2) : 223-241. doi: 10.3934/mbe.2004.1.223
[1]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311

[2]

Hee-Dae Kwon, Jeehyun Lee, Myoungho Yoon. An age-structured model with immune response of HIV infection: Modeling and optimal control approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 153-172. doi: 10.3934/dcdsb.2014.19.153

[3]

Z.-R. He, M.-S. Wang, Z.-E. Ma. Optimal birth control problems for nonlinear age-structured population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 589-594. doi: 10.3934/dcdsb.2004.4.589

[4]

Cristiana J. Silva, Delfim F. M. Torres. A TB-HIV/AIDS coinfection model and optimal control treatment. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4639-4663. doi: 10.3934/dcds.2015.35.4639

[5]

Cristiana J. Silva, Delfim F. M. Torres. Modeling and optimal control of HIV/AIDS prevention through PrEP. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 119-141. doi: 10.3934/dcdss.2018008

[6]

Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler. Dynamics of tumor-immune interaction under treatment as an optimal control problem. Conference Publications, 2011, 2011 (Special) : 971-980. doi: 10.3934/proc.2011.2011.971

[7]

Filipe Rodrigues, Cristiana J. Silva, Delfim F. M. Torres, Helmut Maurer. Optimal control of a delayed HIV model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 443-458. doi: 10.3934/dcdsb.2018030

[8]

Yicang Zhou, Yiming Shao, Yuhua Ruan, Jianqing Xu, Zhien Ma, Changlin Mei, Jianhong Wu. Modeling and prediction of HIV in China: transmission rates structured by infection ages. Mathematical Biosciences & Engineering, 2008, 5 (2) : 403-418. doi: 10.3934/mbe.2008.5.403

[9]

Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song. Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Mathematical Biosciences & Engineering, 2008, 5 (1) : 145-174. doi: 10.3934/mbe.2008.5.145

[10]

Miaomiao Gao, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi, Bashir Ahmad. Dynamics of a stochastic HIV/AIDS model with treatment under regime switching. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021181

[11]

Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani. Optimal control of normalized SIMR models with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 79-99. doi: 10.3934/dcdsb.2018006

[12]

M. Teresa T. Monteiro, Isabel Espírito Santo, Helena Sofia Rodrigues. An optimal control problem applied to a wastewater treatment plant. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021153

[13]

Georgi Kapitanov, Christina Alvey, Katia Vogt-Geisse, Zhilan Feng. An age-structured model for the coupled dynamics of HIV and HSV-2. Mathematical Biosciences & Engineering, 2015, 12 (4) : 803-840. doi: 10.3934/mbe.2015.12.803

[14]

Sebastian Aniţa, Ana-Maria Moşsneagu. Optimal harvesting for age-structured population dynamics with size-dependent control. Mathematical Control & Related Fields, 2019, 9 (4) : 607-621. doi: 10.3934/mcrf.2019043

[15]

Folashade B. Agusto. Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 687-715. doi: 10.3934/dcdsb.2017034

[16]

Brandy Rapatski, Juan Tolosa. Modeling and analysis of the San Francisco City Clinic Cohort (SFCCC) HIV-epidemic including treatment. Mathematical Biosciences & Engineering, 2014, 11 (3) : 599-619. doi: 10.3934/mbe.2014.11.599

[17]

Neha Murad, H. T. Tran, H. T. Banks, R. A. Everett, Eric S. Rosenberg. Immunosuppressant treatment dynamics in renal transplant recipients: an iterative modeling approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2781-2797. doi: 10.3934/dcdsb.2018274

[18]

Linghui Yu, Zhipeng Qiu, Ting Guo. Modeling the effect of activation of CD4$^+$ T cells on HIV dynamics. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021238

[19]

Cristiana J. Silva, Delfim F. M. Torres. Errata to "Modeling and optimal control of HIV/AIDS prevention through PrEP", Discrete Contin. Dyn. Syst. Ser. S 11 (2018), no. 1,119–141. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1619-1621. doi: 10.3934/dcdss.2020343

[20]

Joaquim P. Mateus, Paulo Rebelo, Silvério Rosa, César M. Silva, Delfim F. M. Torres. Optimal control of non-autonomous SEIRS models with vaccination and treatment. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1179-1199. doi: 10.3934/dcdss.2018067

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (116)
  • HTML views (0)
  • Cited by (104)

[Back to Top]