• Previous Article
    Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks
  • MBE Home
  • This Issue
  • Next Article
    A Mathematical Model of Receptor-Mediated Apoptosis: Dying to Know Why FasL is a Trimer
2004, 1(2): 339-346. doi: 10.3934/mbe.2004.1.339

Synchronization between two Hele-Shaw Cells

1. 

Department of Physics and Applied Mathematics, University of Navarra, Irunlarrea, s/n, 31080 Pamplona, Spain, Spain, Spain

Received  February 2004 Revised  May 2004 Published  July 2004

Complete synchronization between two Hele-Shaw cells is examined. The two dynamical systems are chaotic in time and spatially extended in two dimensions. It is shown that a large number of connectors are needed to achieve synchronization. In particular, we have studied how the number of connectors influences the dynamical regime that is set inside the Hele-Shaw cells.
Citation: A. Bernardini, J. Bragard, H. Mancini. Synchronization between two Hele-Shaw Cells. Mathematical Biosciences & Engineering, 2004, 1 (2) : 339-346. doi: 10.3934/mbe.2004.1.339
[1]

Hyung Ju Hwang, Youngmin Oh, Marco Antonio Fontelos. The vanishing surface tension limit for the Hele-Shaw problem. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3479-3514. doi: 10.3934/dcdsb.2016108

[2]

Nataliya Vasylyeva, Vitalii Overko. The Hele-Shaw problem with surface tension in the case of subdiffusion. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1941-1974. doi: 10.3934/cpaa.2016023

[3]

Francesco Della Porta, Maurizio Grasselli. On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems. Communications on Pure & Applied Analysis, 2016, 15 (2) : 299-317. doi: 10.3934/cpaa.2016.15.299

[4]

Wenbin Chen, Wenqiang Feng, Yuan Liu, Cheng Wang, Steven M. Wise. A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 149-182. doi: 10.3934/dcdsb.2018090

[5]

FRANCESCO DELLA PORTA, Maurizio Grasselli. Erratum: "On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems" [Comm. Pure Appl. Anal. 15 (2016), 299--317]. Communications on Pure & Applied Analysis, 2017, 16 (1) : 369-372. doi: 10.3934/cpaa.2017018

[6]

Youngmok Jeon, Eun-Jae Park. Cell boundary element methods for convection-diffusion equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 309-319. doi: 10.3934/cpaa.2006.5.309

[7]

Michael Cranston, Benjamin Gess, Michael Scheutzow. Weak synchronization for isotropic flows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3003-3014. doi: 10.3934/dcdsb.2016084

[8]

Wenxiong Chen, Congming Li. Harmonic maps on complete manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 799-804. doi: 10.3934/dcds.1999.5.799

[9]

Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568

[10]

Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks & Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597

[11]

Inmaculada Leyva, Irene Sendiña-Nadal, Stefano Boccaletti. Explosive synchronization in mono and multilayer networks. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1931-1944. doi: 10.3934/dcdsb.2018189

[12]

Daniel M. N. Maia, Elbert E. N. Macau, Tiago Pereira, Serhiy Yanchuk. Synchronization in networks with strongly delayed couplings. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3461-3482. doi: 10.3934/dcdsb.2018234

[13]

Bernd Ammann, Robert Lauter and Victor Nistor. Algebras of pseudodifferential operators on complete manifolds. Electronic Research Announcements, 2003, 9: 80-87.

[14]

Isabel Mercader, Oriol Batiste, Arantxa Alonso, Edgar Knobloch. Dissipative solitons in binary fluid convection. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1213-1225. doi: 10.3934/dcdss.2011.4.1213

[15]

Ali Ashher Zaidi, Bruce Van Brunt, Graeme Charles Wake. A model for asymmetrical cell division. Mathematical Biosciences & Engineering, 2015, 12 (3) : 491-501. doi: 10.3934/mbe.2015.12.491

[16]

Deborah C. Markham, Ruth E. Baker, Philip K. Maini. Modelling collective cell behaviour. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5123-5133. doi: 10.3934/dcds.2014.34.5123

[17]

Julien Dambrine, Nicolas Meunier, Bertrand Maury, Aude Roudneff-Chupin. A congestion model for cell migration. Communications on Pure & Applied Analysis, 2012, 11 (1) : 243-260. doi: 10.3934/cpaa.2012.11.243

[18]

Stefano Fasani, Sergio Rinaldi. Local stabilization and network synchronization: The case of stationary regimes. Mathematical Biosciences & Engineering, 2010, 7 (3) : 623-639. doi: 10.3934/mbe.2010.7.623

[19]

Seung-Yeal Ha, Se Eun Noh, Jinyeong Park. Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks & Heterogeneous Media, 2015, 10 (4) : 787-807. doi: 10.3934/nhm.2015.10.787

[20]

Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li. Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks & Heterogeneous Media, 2017, 12 (1) : 1-24. doi: 10.3934/nhm.2017001

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]