
Previous Article
Dynamical Models of Tuberculosis and Their Applications
 MBE Home
 This Issue

Next Article
Synchronization between two HeleShaw Cells
Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks
1.  Department of Mathematics, United States Naval Academy, Annapolis, MD 21402, United States 
2.  Deptartments of Mathematics, Computer Science, and Physics, Clarkson University, Potsdam, NY 13699, United States 
[1] 
Razvan C. Fetecau, Beril Zhang. Selforganization on Riemannian manifolds. Journal of Geometric Mechanics, 2019, 11 (3) : 397426. doi: 10.3934/jgm.2019020 
[2] 
Suoqin Jin, FangXiang Wu, Xiufen Zou. Domain control of nonlinear networked systems and applications to complex disease networks. Discrete & Continuous Dynamical Systems  B, 2017, 22 (6) : 21692206. doi: 10.3934/dcdsb.2017091 
[3] 
Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems  B, 2015, 20 (5) : 13931404. doi: 10.3934/dcdsb.2015.20.1393 
[4] 
Jianquan Li, Yicang Zhou, Jianhong Wu, Zhien Ma. Complex dynamics of a simple epidemic model with a nonlinear incidence. Discrete & Continuous Dynamical Systems  B, 2007, 8 (1) : 161173. doi: 10.3934/dcdsb.2007.8.161 
[5] 
Hirotada Honda. On a model of target detection in molecular communication networks. Networks & Heterogeneous Media, 2019, 14 (4) : 633657. doi: 10.3934/nhm.2019025 
[6] 
Karen R. RíosSoto, Baojun Song, Carlos CastilloChavez. Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 199222. doi: 10.3934/mbe.2011.8.199 
[7] 
W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete & Continuous Dynamical Systems  B, 2019, 24 (11) : 62396259. doi: 10.3934/dcdsb.2019137 
[8] 
Wendi Wang. Population dispersal and disease spread. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 797804. doi: 10.3934/dcdsb.2004.4.797 
[9] 
Ionel S. Ciuperca, Matthieu Dumont, Abdelkader Lakmeche, Pauline Mazzocco, Laurent PujoMenjouet, Human Rezaei, Léon M. Tine. Alzheimer's disease and prion: An in vitro mathematical model. Discrete & Continuous Dynamical Systems  B, 2019, 24 (10) : 52255260. doi: 10.3934/dcdsb.2019057 
[10] 
S.M. Moghadas. Modelling the effect of imperfect vaccines on disease epidemiology. Discrete & Continuous Dynamical Systems  B, 2004, 4 (4) : 9991012. doi: 10.3934/dcdsb.2004.4.999 
[11] 
Louis D. Bergsman, James M. Hyman, Carrie A. Manore. A mathematical model for the spread of west nile virus in migratory and resident birds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 401424. doi: 10.3934/mbe.2015009 
[12] 
David Greenhalgh, Karen E. Lamb, Chris Robertson. A mathematical model for the spread of streptococcus pneumoniae with transmission due to sequence type. Conference Publications, 2011, 2011 (Special) : 553567. doi: 10.3934/proc.2011.2011.553 
[13] 
Georgy P. Karev. Dynamics of heterogeneous populations and communities and evolution of distributions. Conference Publications, 2005, 2005 (Special) : 487496. doi: 10.3934/proc.2005.2005.487 
[14] 
Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 132. doi: 10.3934/krm.2017001 
[15] 
Marco Sarich, Natasa Djurdjevac Conrad, Sharon Bruckner, Tim O. F. Conrad, Christof Schütte. Modularity revisited: A novel dynamicsbased concept for decomposing complex networks. Journal of Computational Dynamics, 2014, 1 (1) : 191212. doi: 10.3934/jcd.2014.1.191 
[16] 
Shouying Huang, Jifa Jiang. Epidemic dynamics on complex networks with general infection rate and immune strategies. Discrete & Continuous Dynamical Systems  B, 2018, 23 (6) : 20712090. doi: 10.3934/dcdsb.2018226 
[17] 
Jiying Ma, Dongmei Xiao. Nonlinear dynamics of a mathematical model on action potential duration and calcium transient in paced cardiac cells. Discrete & Continuous Dynamical Systems  B, 2013, 18 (9) : 23772396. doi: 10.3934/dcdsb.2013.18.2377 
[18] 
Nikolay Pertsev, Konstantin Loginov, Gennady Bocharov. Nonlinear effects in the dynamics of HIV1 infection predicted by mathematical model with multiple delays. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 00. doi: 10.3934/dcdss.2020141 
[19] 
Stelian Ion, Gabriela Marinoschi. A selforganizing criticality mathematical model for contamination and epidemic spreading. Discrete & Continuous Dynamical Systems  B, 2017, 22 (2) : 383405. doi: 10.3934/dcdsb.2017018 
[20] 
Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reactiondiffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 5166. doi: 10.3934/mbe.2010.7.51 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]