2004, 1(2): 347-359. doi: 10.3934/mbe.2004.1.347

Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks


Department of Mathematics, United States Naval Academy, Annapolis, MD 21402, United States


Deptartments of Mathematics, Computer Science, and Physics, Clarkson University, Potsdam, NY 13699, United States

Received  April 2004 Revised  June 2004 Published  July 2004

We consider systems that are well modelled as networks that evolve in time, which we call Moving Neighborhood Networks. These models are relevant in studying cooperative behavior of swarms and other phenomena where emergent interactions arise from ad hoc networks. In a natural way, the time-averaged degree distribution gives rise to a scale-free network. Simulations show that although the network may have many noncommunicating components, the recent weighted time-averaged communication is sufficient to yield robust synchronization of chaotic oscillators. In particular, we contend that such time-varying networks are important to model in the situation where each agent carries a pathogen (such as a disease) in which the pathogen's life-cycle has a natural time-scale which competes with the time-scale of movement of the agents, and thus with the networks communication channels.
Citation: Joseph D. Skufca, Erik M. Bollt. Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks. Mathematical Biosciences & Engineering, 2004, 1 (2) : 347-359. doi: 10.3934/mbe.2004.1.347

Razvan C. Fetecau, Beril Zhang. Self-organization on Riemannian manifolds. Journal of Geometric Mechanics, 2019, 11 (3) : 397-426. doi: 10.3934/jgm.2019020


Suoqin Jin, Fang-Xiang Wu, Xiufen Zou. Domain control of nonlinear networked systems and applications to complex disease networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2169-2206. doi: 10.3934/dcdsb.2017091


Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393


Jianquan Li, Yicang Zhou, Jianhong Wu, Zhien Ma. Complex dynamics of a simple epidemic model with a nonlinear incidence. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 161-173. doi: 10.3934/dcdsb.2007.8.161


Hirotada Honda. On a model of target detection in molecular communication networks. Networks & Heterogeneous Media, 2019, 14 (4) : 633-657. doi: 10.3934/nhm.2019025


Karen R. Ríos-Soto, Baojun Song, Carlos Castillo-Chavez. Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 199-222. doi: 10.3934/mbe.2011.8.199


W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6239-6259. doi: 10.3934/dcdsb.2019137


Wendi Wang. Population dispersal and disease spread. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 797-804. doi: 10.3934/dcdsb.2004.4.797


Ionel S. Ciuperca, Matthieu Dumont, Abdelkader Lakmeche, Pauline Mazzocco, Laurent Pujo-Menjouet, Human Rezaei, Léon M. Tine. Alzheimer's disease and prion: An in vitro mathematical model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5225-5260. doi: 10.3934/dcdsb.2019057


Louis D. Bergsman, James M. Hyman, Carrie A. Manore. A mathematical model for the spread of west nile virus in migratory and resident birds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 401-424. doi: 10.3934/mbe.2015009


David Greenhalgh, Karen E. Lamb, Chris Robertson. A mathematical model for the spread of streptococcus pneumoniae with transmission due to sequence type. Conference Publications, 2011, 2011 (Special) : 553-567. doi: 10.3934/proc.2011.2011.553


S.M. Moghadas. Modelling the effect of imperfect vaccines on disease epidemiology. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 999-1012. doi: 10.3934/dcdsb.2004.4.999


Georgy P. Karev. Dynamics of heterogeneous populations and communities and evolution of distributions. Conference Publications, 2005, 2005 (Special) : 487-496. doi: 10.3934/proc.2005.2005.487


Luca Gerardo-Giorda, Pierre Magal, Shigui Ruan, Ousmane Seydi, Glenn Webb. Preface: Population dynamics in epidemiology and ecology. Discrete & Continuous Dynamical Systems - B, 2020, 25 (6) : ⅰ-ⅱ. doi: 10.3934/dcdsb.2020125


Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001


Marco Sarich, Natasa Djurdjevac Conrad, Sharon Bruckner, Tim O. F. Conrad, Christof Schütte. Modularity revisited: A novel dynamics-based concept for decomposing complex networks. Journal of Computational Dynamics, 2014, 1 (1) : 191-212. doi: 10.3934/jcd.2014.1.191


Shouying Huang, Jifa Jiang. Epidemic dynamics on complex networks with general infection rate and immune strategies. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2071-2090. doi: 10.3934/dcdsb.2018226


Jiying Ma, Dongmei Xiao. Nonlinear dynamics of a mathematical model on action potential duration and calcium transient in paced cardiac cells. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2377-2396. doi: 10.3934/dcdsb.2013.18.2377


Nikolay Pertsev, Konstantin Loginov, Gennady Bocharov. Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2365-2384. doi: 10.3934/dcdss.2020141


Stelian Ion, Gabriela Marinoschi. A self-organizing criticality mathematical model for contamination and epidemic spreading. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 383-405. doi: 10.3934/dcdsb.2017018

2018 Impact Factor: 1.313


  • PDF downloads (20)
  • HTML views (0)
  • Cited by (67)

Other articles
by authors

[Back to Top]