-
Previous Article
Toward an Integrated Physiological Theory of Microbial Growth: From Subcellular Variables to Population Dynamics
- MBE Home
- This Issue
-
Next Article
A Simple Epidemic Model with Surprising Dynamics
The Effects of Affinity Mediated Clonal Expansion of Premigrant Thymocytes on the Periphery T-Cell Repertoire
1. | Department of Pathology and laboratory Medicine, The University of Texas Medical School at Houston, Houston, TX 77030 |
[1] |
D. Criaco, M. Dolfin, L. Restuccia. Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 59-73. doi: 10.3934/mbe.2013.10.59 |
[2] |
Lisette dePillis, Trevor Caldwell, Elizabeth Sarapata, Heather Williams. Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 915-943. doi: 10.3934/dcdsb.2013.18.915 |
[3] |
Hongjing Shi, Wanbiao Ma. An improved model of t cell development in the thymus and its stability analysis. Mathematical Biosciences & Engineering, 2006, 3 (1) : 237-248. doi: 10.3934/mbe.2006.3.237 |
[4] |
Amy H. Lin Erickson, Alison Wise, Stephen Fleming, Margaret Baird, Zabeen Lateef, Annette Molinaro, Miranda Teboh-Ewungkem, Lisette dePillis. A preliminary mathematical model of skin dendritic cell trafficking and induction of T cell immunity. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 323-336. doi: 10.3934/dcdsb.2009.12.323 |
[5] |
Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi. Mathematical modeling on helper T cells in a tumor immune system. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 55-72. doi: 10.3934/dcdsb.2014.19.55 |
[6] |
Reihaneh Mostolizadeh, Zahra Afsharnezhad, Anna Marciniak-Czochra. Mathematical model of Chimeric Anti-gene Receptor (CAR) T cell therapy with presence of cytokine. Numerical Algebra, Control and Optimization, 2018, 8 (1) : 63-80. doi: 10.3934/naco.2018004 |
[7] |
Houssein Ayoub, Bedreddine Ainseba, Michel Langlais, Rodolphe Thiébaut. Parameters identification for a model of T cell homeostasis. Mathematical Biosciences & Engineering, 2015, 12 (5) : 917-936. doi: 10.3934/mbe.2015.12.917 |
[8] |
Cliburn Chan, Andrew J.T. George, Jaroslav Stark. T cell sensitivity and specificity - kinetic proofreading revisited. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 343-360. doi: 10.3934/dcdsb.2003.3.343 |
[9] |
Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial and Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229 |
[10] |
Oleg U. Kirnasovsky, Yuri Kogan, Zvia Agur. Resilience in stem cell renewal: development of the Agur--Daniel--Ginosar model. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 129-148. doi: 10.3934/dcdsb.2008.10.129 |
[11] |
Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143-164. doi: 10.3934/mbe.2017010 |
[12] |
Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial and Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005 |
[13] |
Guanyu Wang, Gerhard R. F. Krueger. A General Mathematical Method for Investigating the Thymic Microenvironment, Thymocyte Development, and Immunopathogenesis. Mathematical Biosciences & Engineering, 2004, 1 (2) : 289-305. doi: 10.3934/mbe.2004.1.289 |
[14] |
Fadoua El Moustaid, Amina Eladdadi, Lafras Uys. Modeling bacterial attachment to surfaces as an early stage of biofilm development. Mathematical Biosciences & Engineering, 2013, 10 (3) : 821-842. doi: 10.3934/mbe.2013.10.821 |
[15] |
Liancheng Wang, Sean Ellermeyer. HIV infection and CD4+ T cell dynamics. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1417-1430. doi: 10.3934/dcdsb.2006.6.1417 |
[16] |
Yu-Hsien Chang, Guo-Chin Jau. The behavior of the solution for a mathematical model for analysis of the cell cycle. Communications on Pure and Applied Analysis, 2006, 5 (4) : 779-792. doi: 10.3934/cpaa.2006.5.779 |
[17] |
Mostafa Adimy, Oscar Angulo, Catherine Marquet, Leila Sebaa. A mathematical model of multistage hematopoietic cell lineages. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 1-26. doi: 10.3934/dcdsb.2014.19.1 |
[18] |
Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 89-99. doi: 10.3934/proc.1998.1998.89 |
[19] |
Michael Leguèbe. Cell scale modeling of electropermeabilization by periodic pulses. Mathematical Biosciences & Engineering, 2015, 12 (3) : 537-554. doi: 10.3934/mbe.2015.12.537 |
[20] |
A. Chauviere, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues. Networks and Heterogeneous Media, 2007, 2 (2) : 333-357. doi: 10.3934/nhm.2007.2.333 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]