2005, 2(2): 209-226. doi: 10.3934/mbe.2005.2.209

Partial Differential Equations-Based Segmentation for Radiotherapy Treatment Planning


Department of Computer Science and Department of Mechanical Engineering, University of California at Santa Barbara, CA 93106-5070, United States


Department of Mathematics, Stanford University, Stanford, CA 94305-2125


Siemens Medical Solutions, Med SW West, 755 College Road East, Princeton, NJ 08540, United States


Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States, United States

Received  October 2004 Revised  March 2005 Published  March 2005

The purpose of this study is to develop automatic algorithms for the segmentation phase of radiotherapy treatment planning. We develop new image processing techniques that are based on solving a partial differential equation for the evolution of the curve that identifies the segmented organ. The velocity function is based on the piecewise Mumford-Shah functional. Our method incorporates information about the target organ into classical segmentation algorithms. This information, which is given in terms of a three-dimensional wireframe representation of the organ, serves as an initial guess for the segmentation algorithm. We check the performance of the new algorithm on eight data sets of three different organs: rectum, bladder, and kidney. The results of the automatic segmentation were compared with a manual segmentation of each data set by radiation oncology faculty and residents. The quality of the automatic segmentation was measured with the ''$\kappa$-statistics'', and with a count of over- and undersegmented frames, and was shown in most cases to be very close to the manual segmentation of the same data. A typical segmentation of an organ with sixty slices takes less than ten seconds on a Pentium IV laptop.
Citation: Frédéric Gibou, Doron Levy, Carlos Cárdenas, Pingyu Liu, Arthur Boyer. Partial Differential Equations-Based Segmentation for Radiotherapy Treatment Planning. Mathematical Biosciences & Engineering, 2005, 2 (2) : 209-226. doi: 10.3934/mbe.2005.2.209

Esther Klann, Ronny Ramlau, Wolfgang Ring. A Mumford-Shah level-set approach for the inversion and segmentation of SPECT/CT data. Inverse Problems and Imaging, 2011, 5 (1) : 137-166. doi: 10.3934/ipi.2011.5.137


Li Shen, Eric Todd Quinto, Shiqiang Wang, Ming Jiang. Simultaneous reconstruction and segmentation with the Mumford-Shah functional for electron tomography. Inverse Problems and Imaging, 2018, 12 (6) : 1343-1364. doi: 10.3934/ipi.2018056


Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems and Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073


Antonin Chambolle, Francesco Doveri. Minimizing movements of the Mumford and Shah energy. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 153-174. doi: 10.3934/dcds.1997.3.153


Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems and Imaging, 2021, 15 (2) : 315-338. doi: 10.3934/ipi.2020070


Yoshikazu Giga, Hiroyoshi Mitake, Hung V. Tran. Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3983-3999. doi: 10.3934/dcdsb.2019228


Giovanna Citti, Maria Manfredini, Alessandro Sarti. Finite difference approximation of the Mumford and Shah functional in a contact manifold of the Heisenberg space. Communications on Pure and Applied Analysis, 2010, 9 (4) : 905-927. doi: 10.3934/cpaa.2010.9.905


Zhenlin Guo, Ping Lin, Guangrong Ji, Yangfan Wang. Retinal vessel segmentation using a finite element based binary level set method. Inverse Problems and Imaging, 2014, 8 (2) : 459-473. doi: 10.3934/ipi.2014.8.459


Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047


Zhenhua Zhao, Yining Zhu, Jiansheng Yang, Ming Jiang. Mumford-Shah-TV functional with application in X-ray interior tomography. Inverse Problems and Imaging, 2018, 12 (2) : 331-348. doi: 10.3934/ipi.2018015


Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390


Ye Yuan, Yan Ren, Xiaodong Liu, Jing Wang. Approach to image segmentation based on interval neutrosophic set. Numerical Algebra, Control and Optimization, 2020, 10 (1) : 1-11. doi: 10.3934/naco.2019028


Bin Dong, Aichi Chien, Yu Mao, Jian Ye, Fernando Vinuela, Stanley Osher. Level set based brain aneurysm capturing in 3D. Inverse Problems and Imaging, 2010, 4 (2) : 241-255. doi: 10.3934/ipi.2010.4.241


Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029


Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 361-382. doi: 10.3934/dcdsb.2003.3.361


Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347


Wangtao Lu, Shingyu Leung, Jianliang Qian. An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Problems and Imaging, 2015, 9 (2) : 479-509. doi: 10.3934/ipi.2015.9.479


D. Motreanu, Donal O'Regan, Nikolaos S. Papageorgiou. A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1791-1816. doi: 10.3934/cpaa.2011.10.1791


Enrique Fernández-Cara, Juan Límaco, Laurent Prouvée. Optimal control of a two-equation model of radiotherapy. Mathematical Control and Related Fields, 2018, 8 (1) : 117-133. doi: 10.3934/mcrf.2018005


Juan Carlos López Alfonso, Giuseppe Buttazzo, Bosco García-Archilla, Miguel A. Herrero, Luis Núñez. A class of optimization problems in radiotherapy dosimetry planning. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1651-1672. doi: 10.3934/dcdsb.2012.17.1651

2018 Impact Factor: 1.313


  • PDF downloads (33)
  • HTML views (0)
  • Cited by (10)

[Back to Top]