• Previous Article
    Two-Species Competition with High Dispersal: The Winning Strategy
  • MBE Home
  • This Issue
  • Next Article
    The Ecology and Evolutionary Biology of Cancer: A Review of Mathematical Models of Necrosis and Tumor Cell Diversity
2005, 2(2): 363-380. doi: 10.3934/mbe.2005.2.363

A mathematical model for treatment-resistant mutations of HIV

1. 

American Institute of Mathematics, 360 Portage Avenue, Palo Alto, CA 94306, United States

2. 

Department of Mathematics, Harvey Mudd College, 1250 N. Dartmouth Avenue, Claremont, CA 91711, United States

Received  September 2004 Revised  March 2005 Published  March 2005

In this paper, we propose and analyze a mathematical model, in the form of a system of ordinary differential equations, governing mutated strains of human immunodeficiency virus (HIV) and their interactions with the immune system and treatments. Our model incorporates two types of resistant mutations: strains that are not responsive to protease inhibitors, and strains that are not responsive to reverse transcriptase inhibitors. It also includes strains that do not have either of these two types of resistance (wild-type virus) and strains that have both types. We perform our analysis by changing the system of ordinary differential equations (ODEs) to a simple single-variable ODE, then identifying equilibria and determining stability. We carry out numerical calculations that illustrate the behavior of the system. We also examine the effects of various treatment regimens on the development of treatment-resistant mutations of HIV in this model.
Citation: Helen Moore, Weiqing Gu. A mathematical model for treatment-resistant mutations of HIV. Mathematical Biosciences & Engineering, 2005, 2 (2) : 363-380. doi: 10.3934/mbe.2005.2.363
[1]

Abdessamad Tridane, Yang Kuang. Modeling the interaction of cytotoxic T lymphocytes and influenza virus infected epithelial cells. Mathematical Biosciences & Engineering, 2010, 7 (1) : 171-185. doi: 10.3934/mbe.2010.7.171

[2]

Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi. Mathematical modeling on helper T cells in a tumor immune system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 55-72. doi: 10.3934/dcdsb.2014.19.55

[3]

Lisette dePillis, Trevor Caldwell, Elizabeth Sarapata, Heather Williams. Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 915-943. doi: 10.3934/dcdsb.2013.18.915

[4]

Wenbo Cheng, Wanbiao Ma, Songbai Guo. A class of virus dynamic model with inhibitory effect on the growth of uninfected T cells caused by infected T cells and its stability analysis. Communications on Pure & Applied Analysis, 2016, 15 (3) : 795-806. doi: 10.3934/cpaa.2016.15.795

[5]

D. Criaco, M. Dolfin, L. Restuccia. Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 59-73. doi: 10.3934/mbe.2013.10.59

[6]

Alan D. Rendall. Multiple steady states in a mathematical model for interactions between T cells and macrophages. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 769-782. doi: 10.3934/dcdsb.2013.18.769

[7]

Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song. Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Mathematical Biosciences & Engineering, 2008, 5 (1) : 145-174. doi: 10.3934/mbe.2008.5.145

[8]

Esther Chigidi, Edward M. Lungu. HIV model incorporating differential progression for treatment-naive and treatment-experienced infectives. Mathematical Biosciences & Engineering, 2009, 6 (3) : 427-450. doi: 10.3934/mbe.2009.6.427

[9]

Alacia M. Voth, John G. Alford, Edward W. Swim. Mathematical modeling of continuous and intermittent androgen suppression for the treatment of advanced prostate cancer. Mathematical Biosciences & Engineering, 2017, 14 (3) : 777-804. doi: 10.3934/mbe.2017043

[10]

Donna J. Cedio-Fengya, John G. Stevens. Mathematical modeling of biowall reactors for in-situ groundwater treatment. Mathematical Biosciences & Engineering, 2006, 3 (4) : 615-634. doi: 10.3934/mbe.2006.3.615

[11]

Brandy Rapatski, Juan Tolosa. Modeling and analysis of the San Francisco City Clinic Cohort (SFCCC) HIV-epidemic including treatment. Mathematical Biosciences & Engineering, 2014, 11 (3) : 599-619. doi: 10.3934/mbe.2014.11.599

[12]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311

[13]

Arni S. R. Srinivasa Rao, Kurien Thomas, Kurapati Sudhakar, Philip K. Maini. HIV/AIDS epidemic in India and predicting the impact of the national response: Mathematical modeling and analysis. Mathematical Biosciences & Engineering, 2009, 6 (4) : 779-813. doi: 10.3934/mbe.2009.6.779

[14]

Yun Tian, Yu Bai, Pei Yu. Impact of delay on HIV-1 dynamics of fighting a virus with another virus. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1181-1198. doi: 10.3934/mbe.2014.11.1181

[15]

Frédéric Gibou, Doron Levy, Carlos Cárdenas, Pingyu Liu, Arthur Boyer. Partial Differential Equations-Based Segmentation for Radiotherapy Treatment Planning. Mathematical Biosciences & Engineering, 2005, 2 (2) : 209-226. doi: 10.3934/mbe.2005.2.209

[16]

Maria Vittoria Barbarossa, Christina Kuttler, Jonathan Zinsl. Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells. Mathematical Biosciences & Engineering, 2012, 9 (2) : 241-257. doi: 10.3934/mbe.2012.9.241

[17]

Songbai Guo, Wanbiao Ma. Global behavior of delay differential equations model of HIV infection with apoptosis. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 103-119. doi: 10.3934/dcdsb.2016.21.103

[18]

Nara Bobko, Jorge P. Zubelli. A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 1-21. doi: 10.3934/mbe.2015.12.1

[19]

Shohel Ahmed, Abdul Alim, Sumaiya Rahman. A controlled treatment strategy applied to HIV immunology model. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 299-314. doi: 10.3934/naco.2018019

[20]

Silvia Martorano Raimundo, Hyun Mo Yang, Ezio Venturino. Theoretical assessment of the relative incidences of sensitive and resistant tuberculosis epidemic in presence of drug treatment. Mathematical Biosciences & Engineering, 2014, 11 (4) : 971-993. doi: 10.3934/mbe.2014.11.971

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]