2005, 2(1): 43-51. doi: 10.3934/mbe.2005.2.43

The Role of Non-Genomic Information in Maintaining Thermodynamic Stability in Living Systems


Applied Mathematics, Optical Sciences, and Radiology, University of Arizona, United States, United States

Received  July 2004 Revised  September 2004 Published  November 2004

Living systems represent a local exception, albeit transient, to the second law of thermodynamics, which requires entropy or disorder to increase with time. Cells maintain a stable ordered state by generating a steep transmembrane entropy gradient in an open thermodynamic system far from equilibrium through a variety of entropy exchange mechanisms. Information storage in DNA and translation of that information into proteins is central to maintenance thermodynamic stability, through increased order that results from synthesis of specific macromolecules from monomeric precursors while heat and other reaction products are exported into the environment. While the genome is the most obvious and well-defined source of cellular information, it is not necessarily clear that it is the only cellular information system. In fact, information theory demonstrates that any cellular structure described by a nonrandom density distribution function may store and transmit information. Thus, lipids and polysaccharides, which are both highly structured and non-randomly distributed increase cellular order and potentially contain abundant information as well as polynucleotides and polypeptides. Interestingly, there is no known mechanism that allows information stored in the genome to determine the highly regulated structure and distribution of lipids and polysacchariedes in the cellular membrane suggesting these macromolecules may store and transmit information not contained in the genome. Furthermore, transmembrane gradients of H$^+$, Na$^+$, K$^+$, Ca$^+$, and Cl$^-$ concentrations and the consequent transmembrane electrical potential represent significant displacements from randomness and, therefore, rich potential sources of information.Thus, information theory suggests the genome-protein system may be only one component of a larger ensemble of cellular structures encoding and transmitting the necessary information to maintain living structures in an isoentropic steady state.
Citation: Robert A. Gatenby, B. Roy Frieden. The Role of Non-Genomic Information in Maintaining Thermodynamic Stability in Living Systems. Mathematical Biosciences & Engineering, 2005, 2 (1) : 43-51. doi: 10.3934/mbe.2005.2.43

Rui Wang, Denghua Zhong, Yuankun Zhang, Jia Yu, Mingchao Li. A multidimensional information model for managing construction information. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1285-1300. doi: 10.3934/jimo.2015.11.1285


Tao Gu, Peiyu Ren, Maozhu Jin, Hua Wang. Tourism destination competitiveness evaluation in Sichuan province using TOPSIS model based on information entropy weights. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 771-782. doi: 10.3934/dcdss.2019051


Vikram Krishnamurthy, William Hoiles. Information diffusion in social sensing. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 365-411. doi: 10.3934/naco.2016017


Subrata Dasgupta. Disentangling data, information and knowledge. Big Data & Information Analytics, 2016, 1 (4) : 377-389. doi: 10.3934/bdia.2016016


Apostolis Pavlou. Asymmetric information in a bilateral monopoly. Journal of Dynamics & Games, 2016, 3 (2) : 169-189. doi: 10.3934/jdg.2016009


Ioannis D. Baltas, Athanasios N. Yannacopoulos. Uncertainty and inside information. Journal of Dynamics & Games, 2016, 3 (1) : 1-24. doi: 10.3934/jdg.2016001


Vieri Benci, C. Bonanno, Stefano Galatolo, G. Menconi, M. Virgilio. Dynamical systems and computable information. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 935-960. doi: 10.3934/dcdsb.2004.4.935


Wai-Ki Ching, Jia-Wen Gu, Harry Zheng. On correlated defaults and incomplete information. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020003


Lubomir Kostal, Shigeru Shinomoto. Efficient information transfer by Poisson neurons. Mathematical Biosciences & Engineering, 2016, 13 (3) : 509-520. doi: 10.3934/mbe.2016004


Shengxin Zhu, Tongxiang Gu, Xingping Liu. Aims: Average information matrix splitting. Mathematical Foundations of Computing, 2020  doi: 10.3934/mfc.2020012


Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169


Jian Yang, Youhua (Frank) Chen. On information quality ranking and its managerial implications. Journal of Industrial & Management Optimization, 2010, 6 (4) : 729-750. doi: 10.3934/jimo.2010.6.729


Tero Laihonen. Information retrieval and the average number of input clues. Advances in Mathematics of Communications, 2017, 11 (1) : 203-223. doi: 10.3934/amc.2017013


Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks & Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441


François Monard, Guillaume Bal. Inverse diffusion problems with redundant internal information. Inverse Problems & Imaging, 2012, 6 (2) : 289-313. doi: 10.3934/ipi.2012.6.289


Mathieu Molitor. On the relation between geometrical quantum mechanics and information geometry. Journal of Geometric Mechanics, 2015, 7 (2) : 169-202. doi: 10.3934/jgm.2015.7.169


Hem Joshi, Suzanne Lenhart, Kendra Albright, Kevin Gipson. Modeling the effect of information campaigns on the HIV epidemic in Uganda. Mathematical Biosciences & Engineering, 2008, 5 (4) : 757-770. doi: 10.3934/mbe.2008.5.757


C. Bonanno, G. Menconi. Computational information for the logistic map at the chaos threshold. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 415-431. doi: 10.3934/dcdsb.2002.2.415


C. Bonanno. The algorithmic information content for randomly perturbed systems. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 921-934. doi: 10.3934/dcdsb.2004.4.921


Gregory S. Chirikjian. Information-theoretic inequalities on unimodular Lie groups. Journal of Geometric Mechanics, 2010, 2 (2) : 119-158. doi: 10.3934/jgm.2010.2.119

2018 Impact Factor: 1.313


  • PDF downloads (10)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]