2005, 2(3): 461-472. doi: 10.3934/mbe.2005.2.461

Time Delay In Necrotic Core Formation

1. 

University of Warsaw, Faculty of Mathematics, Informatics and Mechanics, Institute of Applied Mathematics and Mechanics, Banacha 2, 02-097 Warsaw, Poland, Poland

Received  January 2005 Revised  July 2005 Published  August 2005

A simple model of avascular solid tumor dynamics is studied in the paper. The model is derived on the basis of reaction-diffusion dynamics and mass conservation law. We introduce time delay in a cell proliferation process. In the case studied in this paper, the model reduces to one ordinary functional-differential equation of the form that depends on the existence of necrotic core. We focus on the process of this necrotic core formation and the possible influence of delay on it. Basic mathematical properties of the model are studied. The existence, uniqueness and stability of steady state are discussed. Results of numerical simulations are presented.
Citation: Marek Bodnar, Urszula Foryś. Time Delay In Necrotic Core Formation. Mathematical Biosciences & Engineering, 2005, 2 (3) : 461-472. doi: 10.3934/mbe.2005.2.461
[1]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[2]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[3]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[4]

Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997

[5]

Josef Diblík. Long-time behavior of positive solutions of a differential equation with state-dependent delay. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 31-46. doi: 10.3934/dcdss.2020002

[6]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 203-209. doi: 10.3934/dcdss.2020011

[7]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[8]

Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57

[9]

Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-21. doi: 10.3934/dcdsb.2019062

[10]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[11]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[12]

Leonid Shaikhet. Stability of equilibriums of stochastically perturbed delay differential neoclassical growth model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1565-1573. doi: 10.3934/dcdsb.2017075

[13]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[14]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[15]

Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683

[16]

Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259

[17]

Janet Dyson, Rosanna Villella-Bressan, G.F. Webb. The steady state of a maturity structured tumor cord cell population. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 115-134. doi: 10.3934/dcdsb.2004.4.115

[18]

Stéphane Mischler, Clément Mouhot. Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 159-185. doi: 10.3934/dcds.2009.24.159

[19]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[20]

Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]