
Previous Article
A SingleCell Approach in Modeling the Dynamics of Tumor Microregions
 MBE Home
 This Issue

Next Article
Modeling Multicellular Systems Using Subcellular Elements
The Role Of Time Delays, Slow Processes And Chaos In Modulating The CellCycle Clock
1.  Volcani Center, Gilat Experiment Station, Negev 4, 85280, Israel 
2.  Institute for Medical Biomathematics, PO Box 282, 10, Hate'ena St., Bene Ataroth, 60991, Israel 
We hypothesize that the existence of such a reservoir is advantageous in morphogenetic tissues, such as the bone marrow, as it enables time and sitespecific selection of the optimal cellcycle period for any specific micro environment. This can be obtained by the addition of a time delay in the autocatalytic reaction, reflecting, for example, the influence of external molecular signals on cellcycle progression.
[1] 
Orit Lavi, Doron Ginsberg, Yoram Louzoun. Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle. Mathematical Biosciences & Engineering, 2011, 8 (2) : 445461. doi: 10.3934/mbe.2011.8.445 
[2] 
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 28052823. doi: 10.3934/dcds.2012.32.2805 
[3] 
Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846853. doi: 10.3934/proc.2005.2005.846 
[4] 
Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the acdriven complex GinzburgLandau equation. Discrete and Continuous Dynamical Systems  B, 2010, 14 (1) : 129141. doi: 10.3934/dcdsb.2010.14.129 
[5] 
Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 29973007. doi: 10.3934/dcds.2012.32.2997 
[6] 
Matteo Franca, Russell Johnson, Victor MuñozVillarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems  S, 2016, 9 (4) : 11191148. doi: 10.3934/dcdss.2016045 
[7] 
Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 35453566. doi: 10.3934/dcds.2017152 
[8] 
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete and Continuous Dynamical Systems  B, 2021, 26 (5) : 28572877. doi: 10.3934/dcdsb.2020208 
[9] 
Zhiqin Qiao, Deming Zhu, Qiuying Lu. Bifurcation of a heterodimensional cycle with weak inclination flip. Discrete and Continuous Dynamical Systems  B, 2012, 17 (3) : 10091025. doi: 10.3934/dcdsb.2012.17.1009 
[10] 
Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete and Continuous Dynamical Systems  B, 2013, 18 (5) : 14391458. doi: 10.3934/dcdsb.2013.18.1439 
[11] 
Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447456. doi: 10.3934/proc.2011.2011.447 
[12] 
Dmitriy Yu. Volkov. The Hopf  Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 10981104. doi: 10.3934/proc.2015.1098 
[13] 
Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 7178. doi: 10.3934/proc.2011.2011.71 
[14] 
R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure and Applied Analysis, 2003, 2 (2) : 147158. doi: 10.3934/cpaa.2003.2.147 
[15] 
Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete and Continuous Dynamical Systems  S, 2008, 1 (2) : 197205. doi: 10.3934/dcdss.2008.1.197 
[16] 
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete and Continuous Dynamical Systems  S, 2021, 14 (1) : 177203. doi: 10.3934/dcdss.2020344 
[17] 
Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 247258. doi: 10.3934/dcds.2007.17.247 
[18] 
Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems  S, 2022 doi: 10.3934/dcdss.2022069 
[19] 
Fang Wu, Lihong Huang, Jiafu Wang. Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones. Discrete and Continuous Dynamical Systems  B, 2022, 27 (9) : 50475083. doi: 10.3934/dcdsb.2021264 
[20] 
Magdalena Caubergh, Freddy Dumortier, Robert Roussarie. Alien limit cycles in rigid unfoldings of a Hamiltonian 2saddle cycle. Communications on Pure and Applied Analysis, 2007, 6 (1) : 121. doi: 10.3934/cpaa.2007.6.1 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]