-
Previous Article
The Effect of Different Forms for the Delay in A Model of the Nephron
- MBE Home
- This Issue
-
Next Article
From Net Topology to Synchronization in HR Neuron Grids
Registration-Based Morphing of Active Contours for Segmentation of CT Scans
1. | Center for Turbulence Research, Stanford University, Stanford, CA 94305, United States |
2. | Department of Mathematics, Stanford University, Stanford, CA 94305-2125, United States |
[1] |
Luca Bertelli, Frédéric Gibou. Fast two dimensional to three dimensional registration of fluoroscopy and CT-scans using Octrees on segmentation maps. Mathematical Biosciences & Engineering, 2012, 9 (3) : 527-537. doi: 10.3934/mbe.2012.9.527 |
[2] |
Hayden Schaeffer. Active arcs and contours. Inverse Problems and Imaging, 2014, 8 (3) : 845-863. doi: 10.3934/ipi.2014.8.845 |
[3] |
József Z. Farkas, Gary T. Smith, Glenn F. Webb. A dynamic model of CT scans for quantifying doubling time of ground glass opacities using histogram analysis. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1203-1224. doi: 10.3934/mbe.2018055 |
[4] |
Laurence Guillot, Maïtine Bergounioux. Existence and uniqueness results for the gradient vector flow and geodesic active contours mixed model. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1333-1349. doi: 10.3934/cpaa.2009.8.1333 |
[5] |
Egil Bae, Xue-Cheng Tai, Wei Zhu. Augmented Lagrangian method for an Euler's elastica based segmentation model that promotes convex contours. Inverse Problems and Imaging, 2017, 11 (1) : 1-23. doi: 10.3934/ipi.2017001 |
[6] |
Esther Klann, Ronny Ramlau, Wolfgang Ring. A Mumford-Shah level-set approach for the inversion and segmentation of SPECT/CT data. Inverse Problems and Imaging, 2011, 5 (1) : 137-166. doi: 10.3934/ipi.2011.5.137 |
[7] |
Ibrar Hussain, Haider Ali, Muhammad Shahkar Khan, Sijie Niu, Lavdie Rada. Robust region-based active contour models via local statistical similarity and local similarity factor for intensity inhomogeneity and high noise image segmentation. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022014 |
[8] |
Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing. Multiscale Image Registration. Mathematical Biosciences & Engineering, 2006, 3 (2) : 389-418. doi: 10.3934/mbe.2006.3.389 |
[9] |
Mauro Maggioni, James M. Murphy. Learning by active nonlinear diffusion. Foundations of Data Science, 2019, 1 (3) : 271-291. doi: 10.3934/fods.2019012 |
[10] |
Zhao Yi, Justin W. L. Wan. An inviscid model for nonrigid image registration. Inverse Problems and Imaging, 2011, 5 (1) : 263-284. doi: 10.3934/ipi.2011.5.263 |
[11] |
Mohammad T. Manzari, Charles S. Peskin. Paradoxical waves and active mechanism in the cochlea. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4531-4552. doi: 10.3934/dcds.2016.36.4531 |
[12] |
Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 347-369. doi: 10.3934/dcds.1995.1.347 |
[13] |
Fan Jia, Xue-Cheng Tai, Jun Liu. Nonlocal regularized CNN for image segmentation. Inverse Problems and Imaging, 2020, 14 (5) : 891-911. doi: 10.3934/ipi.2020041 |
[14] |
Dana Paquin, Doron Levy, Lei Xing. Multiscale deformable registration of noisy medical images. Mathematical Biosciences & Engineering, 2008, 5 (1) : 125-144. doi: 10.3934/mbe.2008.5.125 |
[15] |
Dana Paquin, Doron Levy, Lei Xing. Hybrid multiscale landmark and deformable image registration. Mathematical Biosciences & Engineering, 2007, 4 (4) : 711-737. doi: 10.3934/mbe.2007.4.711 |
[16] |
Christiane Pöschl, Jan Modersitzki, Otmar Scherzer. A variational setting for volume constrained image registration. Inverse Problems and Imaging, 2010, 4 (3) : 505-522. doi: 10.3934/ipi.2010.4.505 |
[17] |
Wenxiang Cong, Ge Wang, Qingsong Yang, Jia Li, Jiang Hsieh, Rongjie Lai. CT image reconstruction on a low dimensional manifold. Inverse Problems and Imaging, 2019, 13 (3) : 449-460. doi: 10.3934/ipi.2019022 |
[18] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[19] |
Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2227-2268. doi: 10.3934/dcds.2020360 |
[20] |
Sarbaz H. A. Khoshnaw. Reduction of a kinetic model of active export of importins. Conference Publications, 2015, 2015 (special) : 705-722. doi: 10.3934/proc.2015.0705 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]