
Previous Article
An improved model of t cell development in the thymus and its stability analysis
 MBE Home
 This Issue

Next Article
The effect of global travel on the spread of SARS
Competing species models with an infectious disease
1.  Applied Mathematical and Computational Sciences, University of Iowa, 14 MacLean Hall, Iowa City, IA 52242, United States, United States 
[1] 
Luca GerardoGiorda, Pierre Magal, Shigui Ruan, Ousmane Seydi, Glenn Webb. Preface: Population dynamics in epidemiology and ecology. Discrete & Continuous Dynamical Systems  B, 2020, 25 (6) : ⅰⅱ. doi: 10.3934/dcdsb.2020125 
[2] 
Linda J. S. Allen, Vrushali A. Bokil. Stochastic models for competing species with a shared pathogen. Mathematical Biosciences & Engineering, 2012, 9 (3) : 461485. doi: 10.3934/mbe.2012.9.461 
[3] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[4] 
Horst R. Thieme. Distributed susceptibility: A challenge to persistence theory in infectious disease models. Discrete & Continuous Dynamical Systems  B, 2009, 12 (4) : 865882. doi: 10.3934/dcdsb.2009.12.865 
[5] 
Cruz VargasDeLeón, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 10191033. doi: 10.3934/mbe.2017053 
[6] 
Alexander V. Budyansky, Kurt Frischmuth, Vyacheslav G. Tsybulin. Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat. Discrete & Continuous Dynamical Systems  B, 2019, 24 (2) : 547561. doi: 10.3934/dcdsb.2018196 
[7] 
Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377393. doi: 10.3934/mbe.2009.6.377 
[8] 
Julián LópezGómez. On the structure of the permanence region for competing species models with general diffusivities and transport effects. Discrete & Continuous Dynamical Systems  A, 1996, 2 (4) : 525542. doi: 10.3934/dcds.1996.2.525 
[9] 
SzeBi Hsu, ChiuJu Lin. Dynamics of two phytoplankton species competing for light and nutrient with internal storage. Discrete & Continuous Dynamical Systems  S, 2014, 7 (6) : 12591285. doi: 10.3934/dcdss.2014.7.1259 
[10] 
Xinfu Chen, KingYeung Lam, Yuan Lou. Corrigendum: Dynamics of a reactiondiffusionadvection model for two competing species. Discrete & Continuous Dynamical Systems  A, 2014, 34 (11) : 49894995. doi: 10.3934/dcds.2014.34.4989 
[11] 
Xinfu Chen, KingYeung Lam, Yuan Lou. Dynamics of a reactiondiffusionadvection model for two competing species. Discrete & Continuous Dynamical Systems  A, 2012, 32 (11) : 38413859. doi: 10.3934/dcds.2012.32.3841 
[12] 
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595607. doi: 10.3934/mbe.2007.4.595 
[13] 
John D. Nagy. The Ecology and Evolutionary Biology of Cancer: A Review of Mathematical Models of Necrosis and Tumor Cell Diversity. Mathematical Biosciences & Engineering, 2005, 2 (2) : 381418. doi: 10.3934/mbe.2005.2.381 
[14] 
David J. Gerberry. An exact approach to calibrating infectious disease models to surveillance data: The case of HIV and HSV2. Mathematical Biosciences & Engineering, 2018, 15 (1) : 153179. doi: 10.3934/mbe.2018007 
[15] 
S.M. Moghadas. Modelling the effect of imperfect vaccines on disease epidemiology. Discrete & Continuous Dynamical Systems  B, 2004, 4 (4) : 9991012. doi: 10.3934/dcdsb.2004.4.999 
[16] 
Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020140 
[17] 
Carlos M. HernándezSuárez, Oliver MendozaCano. Applications of occupancy urn models to epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 509520. doi: 10.3934/mbe.2009.6.509 
[18] 
Andreas Widder. On the usefulness of setmembership estimation in the epidemiology of infectious diseases. Mathematical Biosciences & Engineering, 2018, 15 (1) : 141152. doi: 10.3934/mbe.2018006 
[19] 
Sara Y. Del Valle, J. M. Hyman, Nakul Chitnis. Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 14751497. doi: 10.3934/mbe.2013.10.1475 
[20] 
Yang Kuang, John D. Nagy, James J. Elser. Biological stoichiometry of tumor dynamics: Mathematical models and analysis. Discrete & Continuous Dynamical Systems  B, 2004, 4 (1) : 221240. doi: 10.3934/dcdsb.2004.4.221 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]