# American Institute of Mathematical Sciences

2006, 3(2): 371-383. doi: 10.3934/mbe.2006.3.371

## Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft

 1 Department of Mathematics, Mahidol University, Payathai, Bangkok, Thailand 10400, Thailand, Thailand 2 Department of Mathematics and Statistics, Curtin University of Technology, GOP Box U1987, Perth, WA 6845, Australia 3 Department of Mathematics, Mahidol Universi, Payathai, Bangkok, Thailand 10400, Thailand

Received  December 2005 Revised  January 2006 Published  February 2006

In this paper, we investigate the behavior of the pulsatile blood flow in a stenosed right coronary artery with a bypass graft. The human blood is assumed to be a non-Newtonian fluid and its viscous behavior is described by the Carreau model. The transient phenomena of blood flow though the stenosed region and the bypass grafts are simulated by solving the three dimensional unsteady Navier-Stokes equations and continuity equation. The influence of the bypass angle on the flow interaction between the jet flow from the native artery and the flow from the bypass graft is investigated. Distributions of velocity, pressure and wall shear stresses are determined under various conditions. The results show that blood pressure in the stenosed artery drops dramatically in the stenosis area and that high wall shear stresses occur around the stenosis site.
Citation: B. Wiwatanapataphee, D. Poltem, Yong Hong Wu, Y. Lenbury. Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft. Mathematical Biosciences & Engineering, 2006, 3 (2) : 371-383. doi: 10.3934/mbe.2006.3.371
 [1] Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok. Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences & Engineering, 2012, 9 (1) : 199-214. doi: 10.3934/mbe.2012.9.199 [2] Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012 [3] Tony Lyons. The 2-component dispersionless Burgers equation arising in the modelling of blood flow. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1563-1576. doi: 10.3934/cpaa.2012.11.1563 [4] Giovanna Guidoboni, Alon Harris, Lucia Carichino, Yoel Arieli, Brent A. Siesky. Effect of intraocular pressure on the hemodynamics of the central retinal artery: A mathematical model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 523-546. doi: 10.3934/mbe.2014.11.523 [5] Juan Pablo Aparicio, Carlos Castillo-Chávez. Mathematical modelling of tuberculosis epidemics. Mathematical Biosciences & Engineering, 2009, 6 (2) : 209-237. doi: 10.3934/mbe.2009.6.209 [6] Adélia Sequeira, Rafael F. Santos, Tomáš Bodnár. Blood coagulation dynamics: mathematical modeling and stability results. Mathematical Biosciences & Engineering, 2011, 8 (2) : 425-443. doi: 10.3934/mbe.2011.8.425 [7] Georgy Th. Guria, Miguel A. Herrero, Ksenia E. Zlobina. A mathematical model of blood coagulation induced by activation sources. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 175-194. doi: 10.3934/dcds.2009.25.175 [8] Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks and Heterogeneous Media, 2009, 4 (3) : 527-536. doi: 10.3934/nhm.2009.4.527 [9] Tong Li, Kun Zhao. On a quasilinear hyperbolic system in blood flow modeling. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 333-344. doi: 10.3934/dcdsb.2011.16.333 [10] Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control and Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521 [11] Zahra Al Helal, Volker Rehbock, Ryan Loxton. Modelling and optimal control of blood glucose levels in the human body. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1149-1164. doi: 10.3934/jimo.2015.11.1149 [12] Geoffrey Beck, Sebastien Imperiale, Patrick Joly. Mathematical modelling of multi conductor cables. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 521-546. doi: 10.3934/dcdss.2015.8.521 [13] Nirav Dalal, David Greenhalgh, Xuerong Mao. Mathematical modelling of internal HIV dynamics. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 305-321. doi: 10.3934/dcdsb.2009.12.305 [14] Oliver Penrose, John W. Cahn. On the mathematical modelling of cellular (discontinuous) precipitation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 963-982. doi: 10.3934/dcds.2017040 [15] Olivier Delestre, Arthur R. Ghigo, José-Maria Fullana, Pierre-Yves Lagrée. A shallow water with variable pressure model for blood flow simulation. Networks and Heterogeneous Media, 2016, 11 (1) : 69-87. doi: 10.3934/nhm.2016.11.69 [16] Mette S. Olufsen, Ali Nadim. On deriving lumped models for blood flow and pressure in the systemic arteries. Mathematical Biosciences & Engineering, 2004, 1 (1) : 61-80. doi: 10.3934/mbe.2004.1.61 [17] Derek H. Justice, H. Joel Trussell, Mette S. Olufsen. Analysis of Blood Flow Velocity and Pressure Signals using the Multipulse Method. Mathematical Biosciences & Engineering, 2006, 3 (2) : 419-440. doi: 10.3934/mbe.2006.3.419 [18] Alberto Zingaro, Ivan Fumagalli, Luca Dede, Marco Fedele, Pasquale C. Africa, Antonio F. Corno, Alfio Quarteroni. A geometric multiscale model for the numerical simulation of blood flow in the human left heart. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2391-2427. doi: 10.3934/dcdss.2022052 [19] Liumei Wu, Baojun Song, Wen Du, Jie Lou. Mathematical modelling and control of echinococcus in Qinghai province, China. Mathematical Biosciences & Engineering, 2013, 10 (2) : 425-444. doi: 10.3934/mbe.2013.10.425 [20] Roderick Melnik, B. Lassen, L. C Lew Yan Voon, M. Willatzen, C. Galeriu. Accounting for nonlinearities in mathematical modelling of quantum dot molecules. Conference Publications, 2005, 2005 (Special) : 642-651. doi: 10.3934/proc.2005.2005.642

2018 Impact Factor: 1.313