2006, 3(2): 389-418. doi: 10.3934/mbe.2006.3.389

Multiscale Image Registration


Department of Mathematics, Stanford University, Stanford, CA 94305-2125, United States


Department of Radiation Oncology, Stanford University, Stanford, CA 94305-5947, United States, United States

Received  December 2005 Revised  January 2006 Published  February 2006

A multiscale image registration technique is presented for the registration of medical images that contain significant levels of noise. An overview of the medical image registration problem is presented, and various registration techniques are discussed. Experiments using mean squares, normalized correlation, and mutual information optimal linear registration are presented that determine the noise levels at which registration using these techniques fails. Further experiments in which classical denoising algorithms are applied prior to registration are presented, and it is shown that registration fails in this case for significantly high levels of noise, as well. The hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L. Vese [20] is presented, and accurate registration of noisy images is achieved by obtaining a hierarchical multiscale decomposition of the images and registering the resulting components. This approach enables successful registration of images that contain noise levels well beyond the level at which ordinary optimal linear registration fails. Image registration experiments demonstrate the accuracy and efficiency of the multiscale registration technique, and for all noise levels, the multiscale technique is as accurate as or more accurate than ordinary registration techniques.
Citation: Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing. Multiscale Image Registration. Mathematical Biosciences & Engineering, 2006, 3 (2) : 389-418. doi: 10.3934/mbe.2006.3.389

Dana Paquin, Doron Levy, Lei Xing. Hybrid multiscale landmark and deformable image registration. Mathematical Biosciences & Engineering, 2007, 4 (4) : 711-737. doi: 10.3934/mbe.2007.4.711


Zhao Yi, Justin W. L. Wan. An inviscid model for nonrigid image registration. Inverse Problems & Imaging, 2011, 5 (1) : 263-284. doi: 10.3934/ipi.2011.5.263


Dana Paquin, Doron Levy, Lei Xing. Multiscale deformable registration of noisy medical images. Mathematical Biosciences & Engineering, 2008, 5 (1) : 125-144. doi: 10.3934/mbe.2008.5.125


Yuan-Nan Young, Doron Levy. Registration-Based Morphing of Active Contours for Segmentation of CT Scans. Mathematical Biosciences & Engineering, 2005, 2 (1) : 79-96. doi: 10.3934/mbe.2005.2.79


Wenxiang Cong, Ge Wang, Qingsong Yang, Jia Li, Jiang Hsieh, Rongjie Lai. CT image reconstruction on a low dimensional manifold. Inverse Problems & Imaging, 2019, 13 (3) : 449-460. doi: 10.3934/ipi.2019022


Christiane Pöschl, Jan Modersitzki, Otmar Scherzer. A variational setting for volume constrained image registration. Inverse Problems & Imaging, 2010, 4 (3) : 505-522. doi: 10.3934/ipi.2010.4.505


José M. Amigó, Beata Graff, Grzegorz Graff, Roberto Monetti, Katarzyna Tessmer. Detecting coupling directions with transcript mutual information: A comparative study. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4079-4097. doi: 10.3934/dcdsb.2019051


Luca Bertelli, Frédéric Gibou. Fast two dimensional to three dimensional registration of fluoroscopy and CT-scans using Octrees on segmentation maps. Mathematical Biosciences & Engineering, 2012, 9 (3) : 527-537. doi: 10.3934/mbe.2012.9.527


Marcus Wagner. A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 487-510. doi: 10.3934/naco.2012.2.487


Angel Angelov, Marcus Wagner. Multimodal image registration by elastic matching of edge sketches via optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 567-590. doi: 10.3934/jimo.2014.10.567


Yangang Chen, Justin W. L. Wan. Numerical method for image registration model based on optimal mass transport. Inverse Problems & Imaging, 2018, 12 (2) : 401-432. doi: 10.3934/ipi.2018018


Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020386


Rudolf Ahlswede. The final form of Tao's inequality relating conditional expectation and conditional mutual information. Advances in Mathematics of Communications, 2007, 1 (2) : 239-242. doi: 10.3934/amc.2007.1.239


Eitan Tadmor, Prashant Athavale. Multiscale image representation using novel integro-differential equations. Inverse Problems & Imaging, 2009, 3 (4) : 693-710. doi: 10.3934/ipi.2009.3.693


Yunmei Chen, Jiangli Shi, Murali Rao, Jin-Seop Lee. Deformable multi-modal image registration by maximizing Rényi's statistical dependence measure. Inverse Problems & Imaging, 2015, 9 (1) : 79-103. doi: 10.3934/ipi.2015.9.79


Mohamed Alahyane, Abdelilah Hakim, Amine Laghrib, Said Raghay. Fluid image registration using a finite volume scheme of the incompressible Navier Stokes equation. Inverse Problems & Imaging, 2018, 12 (5) : 1055-1081. doi: 10.3934/ipi.2018044


Huan Han. A variational model with fractional-order regularization term arising in registration of diffusion tensor image. Inverse Problems & Imaging, 2018, 12 (6) : 1263-1291. doi: 10.3934/ipi.2018053


Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281


Jianping Zhang, Ke Chen, Bo Yu, Derek A. Gould. A local information based variational model for selective image segmentation. Inverse Problems & Imaging, 2014, 8 (1) : 293-320. doi: 10.3934/ipi.2014.8.293


Valerii Maltsev, Michael Pokojovy. On a parabolic-hyperbolic filter for multicolor image noise reduction. Evolution Equations & Control Theory, 2016, 5 (2) : 251-272. doi: 10.3934/eect.2016004

2018 Impact Factor: 1.313


  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

[Back to Top]