 Previous Article
 MBE Home
 This Issue

Next Article
Multiscale Image Registration
Analysis of Blood Flow Velocity and Pressure Signals using the Multipulse Method
1.  Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States 
2.  Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, United States 
3.  Department of Mathematics, North Carolina State University, Raleigh, NC 27695, United States 
[1] 
Adélia Sequeira, Rafael F. Santos, Tomáš Bodnár. Blood coagulation dynamics: mathematical modeling and stability results. Mathematical Biosciences & Engineering, 2011, 8 (2) : 425443. doi: 10.3934/mbe.2011.8.425 
[2] 
Tong Li, Kun Zhao. On a quasilinear hyperbolic system in blood flow modeling. Discrete and Continuous Dynamical Systems  B, 2011, 16 (1) : 333344. doi: 10.3934/dcdsb.2011.16.333 
[3] 
Olivier Delestre, Arthur R. Ghigo, JoséMaria Fullana, PierreYves Lagrée. A shallow water with variable pressure model for blood flow simulation. Networks and Heterogeneous Media, 2016, 11 (1) : 6987. doi: 10.3934/nhm.2016.11.69 
[4] 
Mette S. Olufsen, Ali Nadim. On deriving lumped models for blood flow and pressure in the systemic arteries. Mathematical Biosciences & Engineering, 2004, 1 (1) : 6180. doi: 10.3934/mbe.2004.1.61 
[5] 
Christopher Oballe, Alan Cherne, Dave Boothe, Scott Kerick, Piotr J. Franaszczuk, Vasileios Maroulas. Bayesian topological signal processing. Discrete and Continuous Dynamical Systems  S, 2022, 15 (4) : 797817. doi: 10.3934/dcdss.2021084 
[6] 
Wouter Huberts, E. Marielle H. Bosboom, Frans N. van de Vosse. A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function. Mathematical Biosciences & Engineering, 2009, 6 (1) : 2740. doi: 10.3934/mbe.2009.6.27 
[7] 
Ruxandra Stavre. Optimization of the blood pressure with the control in coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 131151. doi: 10.3934/eect.2020019 
[8] 
Taebeom Kim, Sunčica Čanić, Giovanna Guidoboni. Existence and uniqueness of a solution to a threedimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure and Applied Analysis, 2010, 9 (4) : 839865. doi: 10.3934/cpaa.2010.9.839 
[9] 
Abhinav Tandon. Crop  Weed interactive dynamics in the presence of herbicides: Mathematical modeling and analysis. Discrete and Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021244 
[10] 
Georgy Th. Guria, Miguel A. Herrero, Ksenia E. Zlobina. A mathematical model of blood coagulation induced by activation sources. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 175194. doi: 10.3934/dcds.2009.25.175 
[11] 
Yuanjia Ma. The optimization algorithm for blind processing of high frequency signal of capacitive sensor. Discrete and Continuous Dynamical Systems  S, 2019, 12 (4&5) : 13991412. doi: 10.3934/dcdss.2019096 
[12] 
Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks and Heterogeneous Media, 2009, 4 (3) : 527536. doi: 10.3934/nhm.2009.4.527 
[13] 
Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control and Related Fields, 2014, 4 (4) : 521554. doi: 10.3934/mcrf.2014.4.521 
[14] 
Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete and Continuous Dynamical Systems  S, 2021, 14 (3) : 935951. doi: 10.3934/dcdss.2020382 
[15] 
Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143164. doi: 10.3934/mbe.2017010 
[16] 
Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok. Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences & Engineering, 2012, 9 (1) : 199214. doi: 10.3934/mbe.2012.9.199 
[17] 
B. Wiwatanapataphee, D. Poltem, Yong Hong Wu, Y. Lenbury. Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft. Mathematical Biosciences & Engineering, 2006, 3 (2) : 371383. doi: 10.3934/mbe.2006.3.371 
[18] 
Tony Lyons. The 2component dispersionless Burgers equation arising in the modelling of blood flow. Communications on Pure and Applied Analysis, 2012, 11 (4) : 15631576. doi: 10.3934/cpaa.2012.11.1563 
[19] 
Alberto Zingaro, Ivan Fumagalli, Luca Dede, Marco Fedele, Pasquale C. Africa, Antonio F. Corno, Alfio Quarteroni. A geometric multiscale model for the numerical simulation of blood flow in the human left heart. Discrete and Continuous Dynamical Systems  S, 2022 doi: 10.3934/dcdss.2022052 
[20] 
Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 8999. doi: 10.3934/proc.1998.1998.89 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]