 Previous Article
 MBE Home
 This Issue

Next Article
Multiscale Image Registration
Analysis of Blood Flow Velocity and Pressure Signals using the Multipulse Method
1.  Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States 
2.  Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, United States 
3.  Department of Mathematics, North Carolina State University, Raleigh, NC 27695, United States 
[1] 
Adélia Sequeira, Rafael F. Santos, Tomáš Bodnár. Blood coagulation dynamics: mathematical modeling and stability results. Mathematical Biosciences & Engineering, 2011, 8 (2) : 425443. doi: 10.3934/mbe.2011.8.425 
[2] 
Olivier Delestre, Arthur R. Ghigo, JoséMaria Fullana, PierreYves Lagrée. A shallow water with variable pressure model for blood flow simulation. Networks & Heterogeneous Media, 2016, 11 (1) : 6987. doi: 10.3934/nhm.2016.11.69 
[3] 
Mette S. Olufsen, Ali Nadim. On deriving lumped models for blood flow and pressure in the systemic arteries. Mathematical Biosciences & Engineering, 2004, 1 (1) : 6180. doi: 10.3934/mbe.2004.1.61 
[4] 
Tong Li, Kun Zhao. On a quasilinear hyperbolic system in blood flow modeling. Discrete & Continuous Dynamical Systems  B, 2011, 16 (1) : 333344. doi: 10.3934/dcdsb.2011.16.333 
[5] 
Wouter Huberts, E. Marielle H. Bosboom, Frans N. van de Vosse. A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function. Mathematical Biosciences & Engineering, 2009, 6 (1) : 2740. doi: 10.3934/mbe.2009.6.27 
[6] 
Ruxandra Stavre. Optimization of the blood pressure with the control in coefficients. Evolution Equations & Control Theory, 2020, 9 (1) : 131151. doi: 10.3934/eect.2020019 
[7] 
Taebeom Kim, Sunčica Čanić, Giovanna Guidoboni. Existence and uniqueness of a solution to a threedimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure & Applied Analysis, 2010, 9 (4) : 839865. doi: 10.3934/cpaa.2010.9.839 
[8] 
Yuanjia Ma. The optimization algorithm for blind processing of high frequency signal of capacitive sensor. Discrete & Continuous Dynamical Systems  S, 2019, 12 (4&5) : 13991412. doi: 10.3934/dcdss.2019096 
[9] 
Georgy Th. Guria, Miguel A. Herrero, Ksenia E. Zlobina. A mathematical model of blood coagulation induced by activation sources. Discrete & Continuous Dynamical Systems  A, 2009, 25 (1) : 175194. doi: 10.3934/dcds.2009.25.175 
[10] 
Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020382 
[11] 
Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks & Heterogeneous Media, 2009, 4 (3) : 527536. doi: 10.3934/nhm.2009.4.527 
[12] 
Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521554. doi: 10.3934/mcrf.2014.4.521 
[13] 
Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143164. doi: 10.3934/mbe.2017010 
[14] 
Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok. Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences & Engineering, 2012, 9 (1) : 199214. doi: 10.3934/mbe.2012.9.199 
[15] 
B. Wiwatanapataphee, D. Poltem, Yong Hong Wu, Y. Lenbury. Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft. Mathematical Biosciences & Engineering, 2006, 3 (2) : 371383. doi: 10.3934/mbe.2006.3.371 
[16] 
Tony Lyons. The 2component dispersionless Burgers equation arising in the modelling of blood flow. Communications on Pure & Applied Analysis, 2012, 11 (4) : 15631576. doi: 10.3934/cpaa.2012.11.1563 
[17] 
Giovanna Guidoboni, Alon Harris, Lucia Carichino, Yoel Arieli, Brent A. Siesky. Effect of intraocular pressure on the hemodynamics of the central retinal artery: A mathematical model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 523546. doi: 10.3934/mbe.2014.11.523 
[18] 
Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 8999. doi: 10.3934/proc.1998.1998.89 
[19] 
Weinan E, Jianchun Wang. A thermodynamic study of the twodimensional pressuredriven channel flow. Discrete & Continuous Dynamical Systems  A, 2016, 36 (8) : 43494366. doi: 10.3934/dcds.2016.36.4349 
[20] 
Tiejun Li, Tongkai Li, Shaoying Lu. Nooscillation theorem for the transient dynamics of the linear signal transduction pathway and beyond. Discrete & Continuous Dynamical Systems  B, 2020, 25 (7) : 27492774. doi: 10.3934/dcdsb.2020030 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]