2006, 3(1): 51-65. doi: 10.3934/mbe.2006.3.51

Simulation of structured populations in chemically stressed environments

1. 

Department of Ecology and Evolutional Biology, University of Tennessee, Knoxville, TN 37996, United States

2. 

The Institute for Environmental Modeling, University of Tennessee, Knoxville, TN 37996, United States

Received  January 2005 Revised  April 2005 Published  November 2005

A heterogenous environment usually impacts, and sometimes determines, the structure and function of organisms in a population. We simulate the effects of a chemical on a population in a spatially heterogeneous environment to determine perceived stressor and spatial effects on dynamic behavior of the population. The population is assumed to be physiologically structured and composed of individuals having both sessile and mobile life history stages, who utilize energetically-controlled, resource-directed, chemical-avoidance advective movements and are subjected to random or density dependent diffusion. From a modeling perspective, the presence of a chemical in the environment requires introduction of both an exposure model and an effects module. The spatial location of the chemical stressor determines the exposure levels and ultimately the effects on the population while the relative location of the resource and organism determines growth. We develop a mathematical model, the numerical analysis for this model, and the simulation techniques necessary to solve the problem of population dynamics in an environment where heterogeneity is generated by resource and chemical stressor. In the simulations, the chemical is assumed to be a nonpolar narcotic and the individuals respond to the chemical via both physiological response and by physical movement. In the absence of a chemical stressor, simulation experiments indicate that despite a propensity to move to regions of higher resource density, organisms need not concentrate in the vicinity of high levels of resource. We focus on the dynamical variations due to advection induced by the toxicant. It is demonstrated that the relationship between resource levels and toxicant concentrations is crucial in determining persistence or extinction of the population.
Citation: Thomas G. Hallam, Qingping Deng. Simulation of structured populations in chemically stressed environments. Mathematical Biosciences & Engineering, 2006, 3 (1) : 51-65. doi: 10.3934/mbe.2006.3.51
[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[3]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[4]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[5]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[6]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[7]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[8]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[9]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[10]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[11]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[12]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]