
Previous Article
Mathematical epidemiology of HIV/AIDS in cuba during the period 19862000
 MBE Home
 This Issue

Next Article
Global dynamics of a staged progression model for infectious diseases
Sensitivity and uncertainty analyses for a SARS model with timevarying inputs and outputs
1.  Department of Mathematics and Statistics, University of Winnipeg, Winnipeg, MB, Canada R3B 2E9, Canada 
2.  Department of Statistics, University of Manitoba, Winnipeg, MB, Canada R3T 2N2, Canada 
3.  Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada 
4.  Department of Mathematics, Malaspina UniversityCollege, Nanaimo, BC, Canada V9R 5S5, Canada 
[1] 
Mariantonia Cotronei, Tomas Sauer. Full rank filters and polynomial reproduction. Communications on Pure & Applied Analysis, 2007, 6 (3) : 667687. doi: 10.3934/cpaa.2007.6.667 
[2] 
Jérôme Coville. Nonlocal refuge model with a partial control. Discrete & Continuous Dynamical Systems, 2015, 35 (4) : 14211446. doi: 10.3934/dcds.2015.35.1421 
[3] 
Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed ecoepidemiological model with Holling type II functional response by white noise. Discrete & Continuous Dynamical Systems  B, 2015, 20 (1) : 295321. doi: 10.3934/dcdsb.2015.20.295 
[4] 
Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239259. doi: 10.3934/mbe.2009.6.239 
[5] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[6] 
Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems  B, 2019, 24 (12) : 67716782. doi: 10.3934/dcdsb.2019166 
[7] 
E. GonzálezOlivares, B. GonzálezYañez, Eduardo Sáez, I. Szántó. On the number of limit cycles in a predator prey model with nonmonotonic functional response. Discrete & Continuous Dynamical Systems  B, 2006, 6 (3) : 525534. doi: 10.3934/dcdsb.2006.6.525 
[8] 
Sebastian Aniţa, Bedreddine Ainseba. Internal eradicability for an epidemiological model with diffusion. Mathematical Biosciences & Engineering, 2005, 2 (3) : 437443. doi: 10.3934/mbe.2005.2.437 
[9] 
Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predatorprey model with functional response. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 607614. doi: 10.3934/dcdsb.2004.4.607 
[10] 
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595607. doi: 10.3934/mbe.2007.4.595 
[11] 
Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457470. doi: 10.3934/mbe.2007.4.457 
[12] 
Ling Xue, Caterina Scoglio. Networklevel reproduction number and extinction threshold for vectorborne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565584. doi: 10.3934/mbe.2015.12.565 
[13] 
Lopo F. de Jesus, César M. Silva, Helder Vilarinho. Random perturbations of an ecoepidemiological model. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021040 
[14] 
Gergely Röst, Jianhong Wu. SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2008, 5 (2) : 389402. doi: 10.3934/mbe.2008.5.389 
[15] 
Jinliang Wang, Gang Huang, Yasuhiro Takeuchi, Shengqiang Liu. Sveir epidemiological model with varying infectivity and distributed delays. Mathematical Biosciences & Engineering, 2011, 8 (3) : 875888. doi: 10.3934/mbe.2011.8.875 
[16] 
Wisdom S. Avusuglo, Kenzu Abdella, Wenying Feng. Stability analysis on an economic epidemiological model with vaccination. Mathematical Biosciences & Engineering, 2017, 14 (4) : 975999. doi: 10.3934/mbe.2017051 
[17] 
Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure & Applied Analysis, 2018, 17 (1) : 267283. doi: 10.3934/cpaa.2018016 
[18] 
Xing Huang, Wujun Lv. Stochastic functional Hamiltonian system with singular coefficients. Communications on Pure & Applied Analysis, 2020, 19 (3) : 12571273. doi: 10.3934/cpaa.2020060 
[19] 
Wei Wang, Linyi Qian, Xiaonan Su. Pricing and hedging catastrophe equity put options under a Markovmodulated jump diffusion model. Journal of Industrial & Management Optimization, 2015, 11 (2) : 493514. doi: 10.3934/jimo.2015.11.493 
[20] 
Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems  B, 2017, 22 (8) : 31273144. doi: 10.3934/dcdsb.2017167 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]