2006, 3(3): 545-556. doi: 10.3934/mbe.2006.3.545

Mathematical epidemiology of HIV/AIDS in cuba during the period 1986-2000


NAMS, Richard Stockton College of New Jersey, Pomona, NJ 08240, United States


Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Biology Department MS #34, Woods Hole Oceanographic Institution, Woods Hole, MA 02543-1049, United States


University of Manitoba Winnipeg, Canada


Department of Mathematics, North University of China, Taiyuan, Shanxi, 030051, P. R., China


Centre for Global Health Research at St. Michael's Hospital and Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada

Received  June 2005 Revised  February 2006 Published  May 2006

The dynamics of HIV/AIDS epidemics in a specific region is de- termined not only by virology and virus transmission mechanisms, but also by region's socioeconomic aspects. In this paper we study the HIV transmission dynamics for Cuba. We modify the model of de Arazoza and Lounes [1] accord- ing to the background about the virology and the socioeconomic factors that affect the epidemiology of the Cuban HIV outbreak. The two main methods for detection of HIV/AIDS cases in Cuba are ''random'' testing and contact tracing. As the detection equipment is costly and depends on biotechnological advances, the testing rate can be changed by many external factors. Therefore, our model includes time-dependent testing rates. By comparing our model to the 1986-2000 Cuban HIV/AIDS data and the de Arazoza and Lounes model, we show that socioeconomic aspects are an important factor in determining the dynamics of the epidemic.
Citation: Brandy Rapatski, Petra Klepac, Stephen Dueck, Maoxing Liu, Leda Ivic Weiss. Mathematical epidemiology of HIV/AIDS in cuba during the period 1986-2000. Mathematical Biosciences & Engineering, 2006, 3 (3) : 545-556. doi: 10.3934/mbe.2006.3.545

Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu. A delayed HIV-1 model with virus waning term. Mathematical Biosciences & Engineering, 2016, 13 (1) : 135-157. doi: 10.3934/mbe.2016.13.135


Oanh Chau, R. Oujja, Mohamed Rochdi. A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 61-70. doi: 10.3934/dcdss.2008.1.61


Helen Moore, Weiqing Gu. A mathematical model for treatment-resistant mutations of HIV. Mathematical Biosciences & Engineering, 2005, 2 (2) : 363-380. doi: 10.3934/mbe.2005.2.363


Louis D. Bergsman, James M. Hyman, Carrie A. Manore. A mathematical model for the spread of west nile virus in migratory and resident birds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 401-424. doi: 10.3934/mbe.2015009


Xi Huo. Modeling of contact tracing in epidemic populations structured by disease age. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1685-1713. doi: 10.3934/dcdsb.2015.20.1685


Narges Montazeri Shahtori, Tanvir Ferdousi, Caterina Scoglio, Faryad Darabi Sahneh. Quantifying the impact of early-stage contact tracing on controlling Ebola diffusion. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1165-1180. doi: 10.3934/mbe.2018053


Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483


Mohammad A. Safi, Abba B. Gumel. Global asymptotic dynamics of a model for quarantine and isolation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 209-231. doi: 10.3934/dcdsb.2010.14.209


Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333-362. doi: 10.3934/mbe.2009.6.333


Xinyue Fan, Claude-Michel Brauner, Linda Wittkop. Mathematical analysis of a HIV model with quadratic logistic growth term. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2359-2385. doi: 10.3934/dcdsb.2012.17.2359


Shingo Iwami, Shinji Nakaoka, Yasuhiro Takeuchi. Mathematical analysis of a HIV model with frequency dependence and viral diversity. Mathematical Biosciences & Engineering, 2008, 5 (3) : 457-476. doi: 10.3934/mbe.2008.5.457


Tyson Loudon, Stephen Pankavich. Mathematical analysis and dynamic active subspaces for a long term model of HIV. Mathematical Biosciences & Engineering, 2017, 14 (3) : 709-733. doi: 10.3934/mbe.2017040


Yuan Yuan, Xianlong Fu. Mathematical analysis of an age-structured HIV model with intracellular delay. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021123


Najat Ziyadi. A male-female mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences & Engineering, 2017, 14 (1) : 339-358. doi: 10.3934/mbe.2017022


Yun Tian, Yu Bai, Pei Yu. Impact of delay on HIV-1 dynamics of fighting a virus with another virus. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1181-1198. doi: 10.3934/mbe.2014.11.1181


Nirav Dalal, David Greenhalgh, Xuerong Mao. Mathematical modelling of internal HIV dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 305-321. doi: 10.3934/dcdsb.2009.12.305


Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa. A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences & Engineering, 2005, 2 (4) : 811-832. doi: 10.3934/mbe.2005.2.811


Nikolay Pertsev, Konstantin Loginov, Gennady Bocharov. Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2365-2384. doi: 10.3934/dcdss.2020141


Ariel D. Weinberger, Alan S. Perelson. Persistence and emergence of X4 virus in HIV infection. Mathematical Biosciences & Engineering, 2011, 8 (2) : 605-626. doi: 10.3934/mbe.2011.8.605


Mario Lefebvre. A stochastic model for computer virus propagation. Journal of Dynamics & Games, 2020, 7 (2) : 163-174. doi: 10.3934/jdg.2020010

2018 Impact Factor: 1.313


  • PDF downloads (32)
  • HTML views (0)
  • Cited by (11)

[Back to Top]