- Previous Article
- MBE Home
- This Issue
-
Next Article
Mathematical epidemiology of HIV/AIDS in cuba during the period 1986-2000
A note on epidemic models with infective immigrants and vaccination
1. | Department of Mathematics and Statistics, Arizona State University, P.O. Box 871804, Tempe, AZ 85287-1804, United States |
[1] |
Qianqian Cui, Zhipeng Qiu, Ling Ding. An SIR epidemic model with vaccination in a patchy environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1141-1157. doi: 10.3934/mbe.2017059 |
[2] |
Shujing Gao, Dehui Xie, Lansun Chen. Pulse vaccination strategy in a delayed sir epidemic model with vertical transmission. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 77-86. doi: 10.3934/dcdsb.2007.7.77 |
[3] |
Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999 |
[4] |
Jianquan Li, Zhien Ma. Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 635-642. doi: 10.3934/dcdsb.2004.4.635 |
[5] |
Alan J. Terry. Pulse vaccination strategies in a metapopulation SIR model. Mathematical Biosciences & Engineering, 2010, 7 (2) : 455-477. doi: 10.3934/mbe.2010.7.455 |
[6] |
Jing Hui, Lansun Chen. Impulsive vaccination of sir epidemic models with nonlinear incidence rates. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 595-605. doi: 10.3934/dcdsb.2004.4.595 |
[7] |
Chengxia Lei, Yi Shen, Guanghui Zhang, Yuxiang Zhang. Analysis on a diffusive SEI epidemic model with/without immigration of infected hosts. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4259-4292. doi: 10.3934/dcdss.2021131 |
[8] |
Jia-Feng Cao, Wan-Tong Li, Fei-Ying Yang. Dynamics of a nonlocal SIS epidemic model with free boundary. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 247-266. doi: 10.3934/dcdsb.2017013 |
[9] |
Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291 |
[10] |
David Greenhalgh, Yanfeng Liang, Xuerong Mao. Demographic stochasticity in the SDE SIS epidemic model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2859-2884. doi: 10.3934/dcdsb.2015.20.2859 |
[11] |
Fei-Ying Yang, Wan-Tong Li. Dynamics of a nonlocal dispersal SIS epidemic model. Communications on Pure and Applied Analysis, 2017, 16 (3) : 781-798. doi: 10.3934/cpaa.2017037 |
[12] |
Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101 |
[13] |
Yan Li, Wan-Tong Li, Guo Lin. Traveling waves of a delayed diffusive SIR epidemic model. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1001-1022. doi: 10.3934/cpaa.2015.14.1001 |
[14] |
Urszula Ledzewicz, Heinz Schättler. On optimal singular controls for a general SIR-model with vaccination and treatment. Conference Publications, 2011, 2011 (Special) : 981-990. doi: 10.3934/proc.2011.2011.981 |
[15] |
Azmy S. Ackleh, Linda J. S. Allen. Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 175-188. doi: 10.3934/dcdsb.2005.5.175 |
[16] |
Jing Ge, Ling Lin, Lai Zhang. A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2763-2776. doi: 10.3934/dcdsb.2017134 |
[17] |
Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1 |
[18] |
Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826 |
[19] |
Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51 |
[20] |
Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]