-
Previous Article
Differential susceptibility and infectivity epidemic models
- MBE Home
- This Issue
-
Next Article
Some bifurcation methods of finding limit cycles
Weakly coupled traveling waves for a model of growth and competition in a flow reactor
1. | Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, United States |
[1] |
Wenzhang Huang. Co-existence of traveling waves for a model of microbial growth and competition in a flow reactor. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 883-896. doi: 10.3934/dcds.2009.24.883 |
[2] |
Tianran Zhang. Traveling waves for a reaction-diffusion model with a cyclic structure. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1859-1870. doi: 10.3934/dcdsb.2020006 |
[3] |
Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382 |
[4] |
Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure and Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141 |
[5] |
Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029 |
[6] |
Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic and Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048 |
[7] |
Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21 |
[8] |
Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057 |
[9] |
Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057 |
[10] |
Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526 |
[11] |
Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011 |
[12] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
[13] |
Masaharu Taniguchi. Traveling fronts in perturbed multistable reaction-diffusion equations. Conference Publications, 2011, 2011 (Special) : 1368-1377. doi: 10.3934/proc.2011.2011.1368 |
[14] |
Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001 |
[15] |
Henri Berestycki, Guillemette Chapuisat. Traveling fronts guided by the environment for reaction-diffusion equations. Networks and Heterogeneous Media, 2013, 8 (1) : 79-114. doi: 10.3934/nhm.2013.8.79 |
[16] |
Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591 |
[17] |
Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126 |
[18] |
Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1503-1521. doi: 10.3934/dcdsb.2018054 |
[19] |
Marie Henry, Danielle Hilhorst, Masayasu Mimura. A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 125-154. doi: 10.3934/dcdss.2011.4.125 |
[20] |
Sheng-Chen Fu. Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 189-196. doi: 10.3934/dcdsb.2011.16.189 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]