
Previous Article
The stability of stationary fronts for a discrete nerve axon model
 MBE Home
 This Issue

Next Article
Alternative models for cyclic lemming dynamics
Optimal control for management of an invasive plant species
1.  Department of Mathematics, University of Tennessee, Knoxville, Tennessee 379961300, United States 
2.  Department of Mathematics, University of Tennessee, Knoxville, TN 379961300 
3.  Department of Mathematics & Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 379961300, United States 
[1] 
Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of posthurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems  A, 2020, 40 (6) : 40594071. doi: 10.3934/dcds.2020038 
[2] 
Paula A. GonzálezParra, Sunmi Lee, Leticia Velázquez, Carlos CastilloChavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183197. doi: 10.3934/mbe.2011.8.183 
[3] 
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195215. doi: 10.3934/mcrf.2012.2.195 
[4] 
David GonzálezSánchez, Onésimo HernándezLerma. On the Euler equation approach to discretetime nonstationary optimal control problems. Journal of Dynamics & Games, 2014, 1 (1) : 5778. doi: 10.3934/jdg.2014.1.57 
[5] 
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020186 
[6] 
Erin N. Bodine, Louis J. Gross, Suzanne Lenhart. Optimal control applied to a model for species augmentation. Mathematical Biosciences & Engineering, 2008, 5 (4) : 669680. doi: 10.3934/mbe.2008.5.669 
[7] 
Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on modelreality differences for discretetime nonlinear stochastic optimal control problems. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 109125. doi: 10.3934/naco.2013.3.109 
[8] 
Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discretetime fractionalorder CuckerSmale model. Discrete & Continuous Dynamical Systems  B, 2018, 23 (1) : 347357. doi: 10.3934/dcdsb.2018023 
[9] 
Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems  B, 2019, 24 (4) : 17431767. doi: 10.3934/dcdsb.2018235 
[10] 
Sie Long Kek, Kok Lay Teo, Mohd Ismail Abd Aziz. Filtering solution of nonlinear stochastic optimal control problem in discretetime with modelreality differences. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 207222. doi: 10.3934/naco.2012.2.207 
[11] 
Sie Long Kek, Mohd Ismail Abd Aziz. Output regulation for discretetime nonlinear stochastic optimal control problems with modelreality differences. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 275288. doi: 10.3934/naco.2015.5.275 
[12] 
Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discretetime uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913930. doi: 10.3934/jimo.2017082 
[13] 
Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming formulations of deterministic infinite horizon optimal control problems in discrete time. Discrete & Continuous Dynamical Systems  B, 2017, 22 (10) : 38213838. doi: 10.3934/dcdsb.2017192 
[14] 
Abhyudai Singh, Roger M. Nisbet. Variation in risk in singlespecies discretetime models. Mathematical Biosciences & Engineering, 2008, 5 (4) : 859875. doi: 10.3934/mbe.2008.5.859 
[15] 
V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial & Management Optimization, 2006, 2 (1) : 5562. doi: 10.3934/jimo.2006.2.55 
[16] 
Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 6380. doi: 10.3934/jimo.2006.2.63 
[17] 
Evelyn Herberg, Michael Hinze, Henrik Schumacher. Maximal discrete sparsity in parabolic optimal control with measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020018 
[18] 
Jingang Zhao, Chi Zhang. Finitehorizon optimal control of discretetime linear systems with completely unknown dynamics using Qlearning. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020030 
[19] 
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems  A, 2009, 23 (1&2) : 571604. doi: 10.3934/dcds.2009.23.571 
[20] 
Eugene Kashdan, Svetlana BunimovichMendrazitsky. Hybrid discretecontinuous model of invasive bladder cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 729742. doi: 10.3934/mbe.2013.10.729 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]