2007, 4(2): 319-338. doi: 10.3934/mbe.2007.4.319

On the stability of periodic solutions in the perturbed chemostat

1. 

Projet MERE INRIA-INRA, UMR Analyse des Systèmes et Biométrie INRA, 2, pl. Viala, 34060 Montpellier, France

2. 

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918, United States

3. 

Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, United States

Received  May 2006 Revised  December 2006 Published  February 2007

We study the chemostat model for one species competing for one nutrient using a Lyapunov-type analysis. We design the dilution rate function so that all solutions of the chemostat converge to a prescribed periodic solution. In terms of chemostat biology, this means that no matter what positive initial levels for the species concentration and nutrient are selected, the long-term species concentration and substrate levels closely approximate a prescribed oscillatory behavior. This is significant because it reproduces the realistic ecological situation where the species and substrate concentrations oscillate. We show that the stability is maintained when the model is augmented by additional species that are being driven to extinction. We also give an input-to-state stability result for the chemostat-tracking equations for cases where there are small perturbations acting on the dilution rate and initial concentration. This means that the long-term species concentration and substrate behavior enjoys a highly desirable robustness property, since it continues to approximate the prescribed oscillation up to a small error when there are small unexpected changes in the dilution rate function.
Citation: Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319
[1]

Frederic Mazenc, Gonzalo Robledo, Michael Malisoff. Stability and robustness analysis for a multispecies chemostat model with delays in the growth rates and uncertainties. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1851-1872. doi: 10.3934/dcdsb.2018098

[2]

Desheng Li, P.E. Kloeden. Robustness of asymptotic stability to small time delays. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1007-1034. doi: 10.3934/dcds.2005.13.1007

[3]

Tewfik Sari, Miled El Hajji, Jérôme Harmand. The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat. Mathematical Biosciences & Engineering, 2012, 9 (3) : 627-645. doi: 10.3934/mbe.2012.9.627

[4]

Térence Bayen, Henri Cazenave-Lacroutz, Jérôme Coville. Stability of the chemostat system including a linear coupling between species. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022160

[5]

Zhiwen Zhao. Asymptotic analysis for the electric field concentration with geometry of the core-shell structure. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1109-1137. doi: 10.3934/cpaa.2022012

[6]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[7]

Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012

[8]

Hua Nie, Yuan Lou, Jianhua Wu. Competition between two similar species in the unstirred chemostat. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 621-639. doi: 10.3934/dcdsb.2016.21.621

[9]

Masaaki Mizukami. Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2301-2319. doi: 10.3934/dcdsb.2017097

[10]

Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061

[11]

Masaaki Mizukami. Improvement of conditions for asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 269-278. doi: 10.3934/dcdss.2020015

[12]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2211-2236. doi: 10.3934/cpaa.2021064

[13]

Yu Ma, Chunlai Mu, Shuyan Qiu. Boundedness and asymptotic stability in a two-species predator-prey chemotaxis model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 4077-4095. doi: 10.3934/dcdsb.2021218

[14]

Xiaoqing He, Sze-Bi Hsu, Feng-Bin Wang. A periodic-parabolic Droop model for two species competition in an unstirred chemostat. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4427-4451. doi: 10.3934/dcds.2020185

[15]

Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551

[16]

Salvatore Rionero. A nonlinear $L^2$-stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences & Engineering, 2006, 3 (1) : 189-204. doi: 10.3934/mbe.2006.3.189

[17]

Edoardo Beretta, Fortunata Solimano, Yanbin Tang. Analysis of a chemostat model for bacteria and virulent bacteriophage. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 495-520. doi: 10.3934/dcdsb.2002.2.495

[18]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[19]

Magali Tournus, Aurélie Edwards, Nicolas Seguin, Benoît Perthame. Analysis of a simplified model of the urine concentration mechanism. Networks and Heterogeneous Media, 2012, 7 (4) : 989-1018. doi: 10.3934/nhm.2012.7.989

[20]

Lars Grüne, Vryan Gil Palma. Robustness of performance and stability for multistep and updated multistep MPC schemes. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4385-4414. doi: 10.3934/dcds.2015.35.4385

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (12)

[Back to Top]