# American Institute of Mathematical Sciences

2007, 4(4): 573-594. doi: 10.3934/mbe.2007.4.573

## Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes

 1 Department of Statistics and O.R., Faculty of Mathematics, Complutense University of Madrid, Madrid 28040, Spain 2 Department of Mathematics, University of Athens, Panepistemiopolis, Athens 15784, Greece 3 School of Statistics, Complutense University of Madrid, Madrid 28040, Spain

Received  March 2007 Revised  June 2007 Published  August 2007

Populations are often subject to the effect of catastrophic events that cause mass removal. In particular, metapopulation models, epidemics, and migratory flows provide practical examples of populations subject to disasters (e.g., habitat destruction, environmental catastrophes). Many stochastic models have been developed to explain the behavior of these populations. Most of the reported results concern the measures of the risk of extinction and the distribution of the population size in the case of total catastrophes where all individuals in the population are removed simultaneously. In this paper, we investigate the basic immigration process subject to binomial and geometric catastrophes; that is, the population size is reduced according to a binomial or a geometric law. We carry out an extensive analysis including first extinction time, number of individuals removed, survival time of a tagged individual, and maximum population size reached between two consecutive extinctions. Many explicit expressions are derived for these system descriptors, and some emphasis is put to show that some of them deserve extra attention.
Citation: Jesus R. Artalejo, A. Economou, M.J. Lopez-Herrero. Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes. Mathematical Biosciences & Engineering, 2007, 4 (4) : 573-594. doi: 10.3934/mbe.2007.4.573
 [1] Dongxue Yan, Xianlong Fu. Long-time behavior of a size-structured population model with diffusion and delayed birth process. Evolution Equations and Control Theory, 2022, 11 (3) : 895-923. doi: 10.3934/eect.2021030 [2] Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041 [3] Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4627-4646. doi: 10.3934/dcds.2013.33.4627 [4] Mustapha Mokhtar-Kharroubi, Quentin Richard. Spectral theory and time asymptotics of size-structured two-phase population models. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2969-3004. doi: 10.3934/dcdsb.2020048 [5] Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4535-4551. doi: 10.3934/dcdsb.2020111 [6] Cecilia Cavaterra, M. Grasselli. Robust exponential attractors for population dynamics models with infinite time delay. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1051-1076. doi: 10.3934/dcdsb.2006.6.1051 [7] Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265 [8] Lakhdar Aggoun, Lakdere Benkherouf. A Markov modulated continuous-time capture-recapture population estimation model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1057-1075. doi: 10.3934/dcdsb.2005.5.1057 [9] Dan Zhang, Xiaochun Cai, Lin Wang. Complex dynamics in a discrete-time size-structured chemostat model with inhibitory kinetics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3439-3451. doi: 10.3934/dcdsb.2018327 [10] Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 [11] Samuel N. Cohen. Uncertainty and filtering of hidden Markov models in discrete time. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 4-. doi: 10.1186/s41546-020-00046-x [12] Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265 [13] Mattia Turra. Existence and extinction in finite time for Stratonovich gradient noise porous media equations. Evolution Equations and Control Theory, 2019, 8 (4) : 867-882. doi: 10.3934/eect.2019042 [14] Yoshikazu Giga, Robert V. Kohn. Scale-invariant extinction time estimates for some singular diffusion equations. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 509-535. doi: 10.3934/dcds.2011.30.509 [15] Ozgur Aydogmus, Yun Kang. Analysis of stationary patterns arising from a time-discrete metapopulation model with nonlocal competition. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2917-2934. doi: 10.3934/dcdsb.2021166 [16] Chuangxia Huang, Lihong Huang, Jianhong Wu. Global population dynamics of a single species structured with distinctive time-varying maturation and self-limitation delays. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2427-2440. doi: 10.3934/dcdsb.2021138 [17] Chuangxia Huang, Xiaojin Guo, Jinde Cao, Ardak Kashkynbayev. Bistable dynamics on a tick population equation incorporating Allee effect and two different time-varying delays. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022122 [18] Piotr Oprocha. Chain recurrence in multidimensional time discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1039-1056. doi: 10.3934/dcds.2008.20.1039 [19] Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistence-time estimation for some stochastic SIS epidemic models. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2933-2947. doi: 10.3934/dcdsb.2015.20.2933 [20] Bradley G. Wagner, Brian J. Coburn, Sally Blower. Increasing survival time decreases the cost-effectiveness of using "test & treat'' to eliminate HIV epidemics. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1673-1686. doi: 10.3934/mbe.2013.10.1673

2018 Impact Factor: 1.313