
Previous Article
On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China
 MBE Home
 This Issue

Next Article
Global stability of equilibria in a tickborne disease model
Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes
1.  Department of Statistics and O.R., Faculty of Mathematics, Complutense University of Madrid, Madrid 28040, Spain 
2.  Department of Mathematics, University of Athens, Panepistemiopolis, Athens 15784, Greece 
3.  School of Statistics, Complutense University of Madrid, Madrid 28040, Spain 
[1] 
Dongxue Yan, Xianlong Fu. Longtime behavior of a sizestructured population model with diffusion and delayed birth process. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021030 
[2] 
Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a sizestructured population model. Discrete & Continuous Dynamical Systems  B, 2017, 22 (3) : 831840. doi: 10.3934/dcdsb.2017041 
[3] 
Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete & Continuous Dynamical Systems, 2013, 33 (10) : 46274646. doi: 10.3934/dcds.2013.33.4627 
[4] 
Mustapha MokhtarKharroubi, Quentin Richard. Spectral theory and time asymptotics of sizestructured twophase population models. Discrete & Continuous Dynamical Systems  B, 2020, 25 (8) : 29693004. doi: 10.3934/dcdsb.2020048 
[5] 
Xi Zhu, Meixia Li, Chunfa Li. Consensus in discretetime multiagent systems with uncertain topologies and random delays governed by a Markov chain. Discrete & Continuous Dynamical Systems  B, 2020, 25 (12) : 45354551. doi: 10.3934/dcdsb.2020111 
[6] 
Cecilia Cavaterra, M. Grasselli. Robust exponential attractors for population dynamics models with infinite time delay. Discrete & Continuous Dynamical Systems  B, 2006, 6 (5) : 10511076. doi: 10.3934/dcdsb.2006.6.1051 
[7] 
Tristan Roget. On the longtime behaviour of age and trait structured population dynamics. Discrete & Continuous Dynamical Systems  B, 2019, 24 (6) : 25512576. doi: 10.3934/dcdsb.2018265 
[8] 
Lakhdar Aggoun, Lakdere Benkherouf. A Markov modulated continuoustime capturerecapture population estimation model. Discrete & Continuous Dynamical Systems  B, 2005, 5 (4) : 10571075. doi: 10.3934/dcdsb.2005.5.1057 
[9] 
Dan Zhang, Xiaochun Cai, Lin Wang. Complex dynamics in a discretetime sizestructured chemostat model with inhibitory kinetics. Discrete & Continuous Dynamical Systems  B, 2019, 24 (7) : 34393451. doi: 10.3934/dcdsb.2018327 
[10] 
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discretetime semiMarkov processes. Discrete & Continuous Dynamical Systems  B, 2021, 26 (3) : 14991529. doi: 10.3934/dcdsb.2020170 
[11] 
Samuel N. Cohen. Uncertainty and filtering of hidden Markov models in discrete time. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 4. doi: 10.1186/s4154602000046x 
[12] 
Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265271. doi: 10.3934/proc.2011.2011.265 
[13] 
Mattia Turra. Existence and extinction in finite time for Stratonovich gradient noise porous media equations. Evolution Equations & Control Theory, 2019, 8 (4) : 867882. doi: 10.3934/eect.2019042 
[14] 
Yoshikazu Giga, Robert V. Kohn. Scaleinvariant extinction time estimates for some singular diffusion equations. Discrete & Continuous Dynamical Systems, 2011, 30 (2) : 509535. doi: 10.3934/dcds.2011.30.509 
[15] 
Ozgur Aydogmus, Yun Kang. Analysis of stationary patterns arising from a timediscrete metapopulation model with nonlocal competition. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021166 
[16] 
Piotr Oprocha. Chain recurrence in multidimensional time discrete dynamical systems. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 10391056. doi: 10.3934/dcds.2008.20.1039 
[17] 
Chuangxia Huang, Lihong Huang, Jianhong Wu. Global population dynamics of a single species structured with distinctive timevarying maturation and selflimitation delays. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021138 
[18] 
Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistencetime estimation for some stochastic SIS epidemic models. Discrete & Continuous Dynamical Systems  B, 2015, 20 (9) : 29332947. doi: 10.3934/dcdsb.2015.20.2933 
[19] 
Bradley G. Wagner, Brian J. Coburn, Sally Blower. Increasing survival time decreases the costeffectiveness of using "test & treat'' to eliminate HIV epidemics. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 16731686. doi: 10.3934/mbe.2013.10.1673 
[20] 
H. L. Smith, X. Q. Zhao. Competitive exclusion in a discretetime, sizestructured chemostat model. Discrete & Continuous Dynamical Systems  B, 2001, 1 (2) : 183191. doi: 10.3934/dcdsb.2001.1.183 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]