
Previous Article
Improved integrateandfire model for RSA
 MBE Home
 This Issue

Next Article
Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes
On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China
1.  Institut de Recherche pour le Développement (I.R.D.), 32 avenue Henri Varagnat, 93143 Bondy cedex, France 
2.  College of Mathematics and System Sciences, Xinjiang University, 14 Shengli Road, Urumqi, 830046, China 
3.  National Center for Women and Children's Health, Department of Information Management, 13 Dong Tu Cheng Street, Chang Yang District, Beijing, 100013, China 
[1] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[2] 
Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID19: A case study of India, Brazil and Peru. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2021170 
[3] 
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 14551474. doi: 10.3934/mbe.2013.10.1455 
[4] 
Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems  B, 2019, 24 (12) : 67716782. doi: 10.3934/dcdsb.2019166 
[5] 
Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239259. doi: 10.3934/mbe.2009.6.239 
[6] 
Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reactiondiffusion epidemic model. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021170 
[7] 
Ping Li, Pablo Raúl Stinga, José L. Torrea. On weighted mixednorm Sobolev estimates for some basic parabolic equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 855882. doi: 10.3934/cpaa.2017041 
[8] 
Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457470. doi: 10.3934/mbe.2007.4.457 
[9] 
Ling Xue, Caterina Scoglio. Networklevel reproduction number and extinction threshold for vectorborne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565584. doi: 10.3934/mbe.2015.12.565 
[10] 
Abraão D. C. Nascimento, Leandro C. Rêgo, Raphaela L. B. A. Nascimento. Compound truncated Poisson normal distribution: Mathematical properties and Moment estimation. Inverse Problems & Imaging, 2019, 13 (4) : 787803. doi: 10.3934/ipi.2019036 
[11] 
François Golse. The BoltzmannGrad limit for the Lorentz gas with a Poisson distribution of obstacles. Kinetic & Related Models, , () : . doi: 10.3934/krm.2022001 
[12] 
Marius Ghergu, Gurpreet Singh. On a class of mixed ChoquardSchrödingerPoisson systems. Discrete & Continuous Dynamical Systems  S, 2019, 12 (2) : 297309. doi: 10.3934/dcdss.2019021 
[13] 
Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed PoissonGaussian noise removal. Inverse Problems & Imaging, 2021, 15 (2) : 339366. doi: 10.3934/ipi.2020071 
[14] 
Arni S.R. Srinivasa Rao, Masayuki Kakehashi. Incubationtime distribution in backcalculation applied to HIV/AIDS data in India. Mathematical Biosciences & Engineering, 2005, 2 (2) : 263277. doi: 10.3934/mbe.2005.2.263 
[15] 
Jia Li, Zuowei Shen, Rujie Yin, Xiaoqun Zhang. A reweighted $l^2$ method for image restoration with Poisson and mixed PoissonGaussian noise. Inverse Problems & Imaging, 2015, 9 (3) : 875894. doi: 10.3934/ipi.2015.9.875 
[16] 
Nicolai T. A. Haydn, Kasia Wasilewska. Limiting distribution and error terms for the number of visits to balls in nonuniformly hyperbolic dynamical systems. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 25852611. doi: 10.3934/dcds.2016.36.2585 
[17] 
Veena Goswami, M. L. Chaudhry. Explicit results for the distribution of the number of customers served during a busy period for $M^X/PH/1$ queue. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021168 
[18] 
Juntao Sun, Tsungfang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 36513682. doi: 10.3934/dcds.2021011 
[19] 
Quan Hai, Shutang Liu. Meansquare delaydistributiondependent exponential synchronization of chaotic neural networks with mixed random timevarying delays and restricted disturbances. Discrete & Continuous Dynamical Systems  B, 2021, 26 (6) : 30973118. doi: 10.3934/dcdsb.2020221 
[20] 
Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations & Control Theory, 2016, 5 (4) : 475487. doi: 10.3934/eect.2016015 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]