2007, 4(4): 617-631. doi: 10.3934/mbe.2007.4.617

A model of activity-dependent changes in dendritic spine density and spine structure

1. 

Department of Mathematics and Statistics and School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States

2. 

Department of Mathematics and Statistics, Arizona State University, Tempe, Arizona 85287, United States, United States

Received  February 2007 Revised  June 2007 Published  August 2007

Recent evidence indicates that the morphology and density of dendritic spines are regulated during synaptic plasticity. See, for instance, a review by Hayashi and Majewska [9]. In this work, we extend previous modeling studies [27] by combining a model for activity-dependent spine density with one for calcium-mediated spine stem restructuring. The model is based on the standard dimensionless cable equation, which represents the change in the membrane potential in a passive dendrite. Additional equations characterize the change in spine density along the dendrite, the current balance equation for an individual spine head, the change in calcium concentration in the spine head, and the dynamics of spine stem resistance. We use computational studies to investigate the changes in spine density and structure for differing synaptic inputs and demonstrate the effects of these changes on the input-output properties of the dendritic branch. Moderate amounts of high-frequency synaptic activation to dendritic spines result in an increase in spine stem resistance that is correlated with spine stem elongation. In addition, the spine density increases both inside and outside the input region. The model is formulated so that this long-term potentiation-inducing stimulus eventually leads to structural stability. In contrast, a prolonged low-frequency stimulation paradigm that would typically induce long-term depression results in a decrease in stem resistance (correlated with stem shortening) and an eventual decrease in spine density.
Citation: S. M. Crook, M. Dur-e-Ahmad, S. M. Baer. A model of activity-dependent changes in dendritic spine density and spine structure. Mathematical Biosciences & Engineering, 2007, 4 (4) : 617-631. doi: 10.3934/mbe.2007.4.617
[1]

Tomáš Roubíček. Thermodynamics of perfect plasticity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 193-214. doi: 10.3934/dcdss.2013.6.193

[2]

M. Hadjiandreou, Raul Conejeros, Vassilis S. Vassiliadis. Towards a long-term model construction for the dynamic simulation of HIV infection. Mathematical Biosciences & Engineering, 2007, 4 (3) : 489-504. doi: 10.3934/mbe.2007.4.489

[3]

Brian Pigott, Sarah Raynor. Long-term stability for kdv solitons in weighted Hs spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 393-416. doi: 10.3934/cpaa.2017020

[4]

Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio. Congestion-driven dendritic growth. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1575-1604. doi: 10.3934/dcds.2014.34.1575

[5]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[6]

Raffaele D'Ambrosio, Martina Moccaldi, Beatrice Paternoster. Numerical preservation of long-term dynamics by stochastic two-step methods. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2763-2773. doi: 10.3934/dcdsb.2018105

[7]

Ian Johnson, Evelyn Sander, Thomas Wanner. Branch interactions and long-term dynamics for the diblock copolymer model in one dimension. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3671-3705. doi: 10.3934/dcds.2013.33.3671

[8]

Francesco Solombrino. Quasistatic evolution for plasticity with softening: The spatially homogeneous case. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1189-1217. doi: 10.3934/dcds.2010.27.1189

[9]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Globally stable quasistatic evolution in plasticity with softening. Networks & Heterogeneous Media, 2008, 3 (3) : 567-614. doi: 10.3934/nhm.2008.3.567

[10]

Gilles A. Francfort, Alessandro Giacomini, Alessandro Musesti. On the Fleck and Willis homogenization procedure in strain gradient plasticity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 43-62. doi: 10.3934/dcdss.2013.6.43

[11]

Joanna R. Wares, Joseph J. Crivelli, Chae-Ok Yun, Il-Kyu Choi, Jana L. Gevertz, Peter S. Kim. Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1237-1256. doi: 10.3934/mbe.2015.12.1237

[12]

Gianni Dal Maso, Francesco Solombrino. Quasistatic evolution for Cam-Clay plasticity: The spatially homogeneous case. Networks & Heterogeneous Media, 2010, 5 (1) : 97-132. doi: 10.3934/nhm.2010.5.97

[13]

Alessandro Giacomini. On the energetic formulation of the Gurtin and Anand model in strain gradient plasticity. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 527-552. doi: 10.3934/dcdsb.2012.17.527

[14]

Amy H. Lin Erickson, Alison Wise, Stephen Fleming, Margaret Baird, Zabeen Lateef, Annette Molinaro, Miranda Teboh-Ewungkem, Lisette dePillis. A preliminary mathematical model of skin dendritic cell trafficking and induction of T cell immunity. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 323-336. doi: 10.3934/dcdsb.2009.12.323

[15]

Erica M. Rutter, Yang Kuang. Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1001-1021. doi: 10.3934/dcdsb.2017050

[16]

Michiel Bertsch, Roberta Dal Passo, Lorenzo Giacomelli, Giuseppe Tomassetti. A nonlocal and fully nonlinear degenerate parabolic system from strain-gradient plasticity. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 15-43. doi: 10.3934/dcdsb.2011.15.15

[17]

Sergio Conti, Georg Dolzmann, Carolin Kreisbeck. Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 1-16. doi: 10.3934/dcdss.2013.6.1

[18]

Nelly Point, Silvano Erlicher. Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 567-590. doi: 10.3934/dcdss.2013.6.567

[19]

Tyson Loudon, Stephen Pankavich. Mathematical analysis and dynamic active subspaces for a long term model of HIV. Mathematical Biosciences & Engineering, 2017, 14 (3) : 709-733. doi: 10.3934/mbe.2017040

[20]

Mouhamadou Aliou M. T. Baldé, Diaraf Seck. Coupling the shallow water equation with a long term dynamics of sand dunes. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1521-1551. doi: 10.3934/dcdss.2016061

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]