2007, 4(4): 661-673. doi: 10.3934/mbe.2007.4.661

Modelling periodic oscillations during somitogenesis

1. 

Department of Physical Sciences and Mathematics, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965, United States, United States

Received  July 2007 Revised  July 2007 Published  August 2007

We consider a model of genetic network that has been previously presented by J. Lewis. This model takes the form of delay differential equations with two delays. We give conditions for the local stability of the non-trivial steady state. We investigate the condition underwhich stability is lost and oscillations occur. In particular, we show that when the ratio of the time delays passes a threshold, sustained oscillations occur through a Hopf bifurcation. Through numerical simulations, we further investigate the ways in which various parameters influence the period and the amplitude of the oscillations. In conclusion, we discuss the implications of our results.
Citation: Peng Feng, Menaka Navaratna. Modelling periodic oscillations during somitogenesis. Mathematical Biosciences & Engineering, 2007, 4 (4) : 661-673. doi: 10.3934/mbe.2007.4.661
[1]

Julien Barré, Pierre Degond, Diane Peurichard, Ewelina Zatorska. Modelling pattern formation through differential repulsion. Networks and Heterogeneous Media, 2020, 15 (3) : 307-352. doi: 10.3934/nhm.2020021

[2]

Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031

[3]

Hyung Ju Hwang, Thomas P. Witelski. Short-time pattern formation in thin film equations. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 867-885. doi: 10.3934/dcds.2009.23.867

[4]

Michael Dellnitz, Mirko Hessel-Von Molo, Adrian Ziessler. On the computation of attractors for delay differential equations. Journal of Computational Dynamics, 2016, 3 (1) : 93-112. doi: 10.3934/jcd.2016005

[5]

Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751

[6]

Klaudiusz Wójcik, Piotr Zgliczyński. Topological horseshoes and delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 827-852. doi: 10.3934/dcds.2005.12.827

[7]

Julien Cividini. Pattern formation in 2D traffic flows. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395

[8]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[9]

Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555

[10]

Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809

[11]

Taylan Sengul, Shouhong Wang. Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2609-2639. doi: 10.3934/cpaa.2014.13.2609

[12]

Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217

[13]

Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021, 8 (2) : 213-240. doi: 10.3934/jcd.2021010

[14]

Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022103

[15]

Serhiy Yanchuk, Leonhard Lücken, Matthias Wolfrum, Alexander Mielke. Spectrum and amplitude equations for scalar delay-differential equations with large delay. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 537-553. doi: 10.3934/dcds.2015.35.537

[16]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[17]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[18]

Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633

[19]

Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367

[20]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]