-
Previous Article
Alternative models for cyclic lemming dynamics
- MBE Home
- This Issue
-
Next Article
Insect development under predation risk, variable temperature, and variable food quality
An individual, stochastic model of growth incorporating state-dependent risk and random foraging and climate
1. | Program in Mathematics, College of St. Mary, Omaha, NE 68134 |
2. | Department of Mathematics, University of Nebraska, Lincoln, NE 68588-0130 |
[1] |
Chanakarn Kiataramkul, Graeme Wake, Alona Ben-Tal, Yongwimon Lenbury. Optimal nutritional intake for fetal growth. Mathematical Biosciences & Engineering, 2011, 8 (3) : 723-732. doi: 10.3934/mbe.2011.8.723 |
[2] |
J. G. Ollason, N. Ren. A general dynamical theory of foraging in animals. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 713-720. doi: 10.3934/dcdsb.2004.4.713 |
[3] |
J. A. López Molina, M. J. Rivera, E. Berjano. Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state. Mathematical Biosciences & Engineering, 2016, 13 (2) : 281-301. doi: 10.3934/mbe.2015003 |
[4] |
Ziyad AlSharawi, Nikhil Pal, Joydev Chattopadhyay. The role of vigilance on a discrete-time predator-prey model. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022017 |
[5] |
Brahim El Asri, Sehail Mazid. Stochastic impulse control Problem with state and time dependent cost functions. Mathematical Control and Related Fields, 2020, 10 (4) : 855-875. doi: 10.3934/mcrf.2020022 |
[6] |
W. Y. Tan, L.-J. Zhang, C.W. Chen. Stochastic modeling of carcinogenesis: State space models and estimation of parameters. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 297-322. doi: 10.3934/dcdsb.2004.4.297 |
[7] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 821-836. doi: 10.3934/dcdsb.2021066 |
[8] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[9] |
Susmita Halder, Joydeb Bhattacharyya, Samares Pal. Predator-prey interactions under fear effect and multiple foraging strategies. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3779-3810. doi: 10.3934/dcdsb.2021206 |
[10] |
Igor Chueshov, Peter E. Kloeden, Meihua Yang. Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 991-1009. doi: 10.3934/dcdsb.2018139 |
[11] |
Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521 |
[12] |
Haiyan Zhang. A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1287-1301. doi: 10.3934/jimo.2016.12.1287 |
[13] |
Komi Messan, Yun Kang. A two patch prey-predator model with multiple foraging strategies in predator: Applications to insects. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 947-976. doi: 10.3934/dcdsb.2017048 |
[14] |
Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011 |
[15] |
Roberto Garra. Confinement of a hot temperature patch in the modified SQG model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2407-2416. doi: 10.3934/dcdsb.2018258 |
[16] |
Stéphane Brull, Bruno Dubroca, Corentin Prigent. A kinetic approach of the bi-temperature Euler model. Kinetic and Related Models, 2020, 13 (1) : 33-61. doi: 10.3934/krm.2020002 |
[17] |
Naveen K. Vaidya, Xianping Li, Feng-Bin Wang. Impact of spatially heterogeneous temperature on the dynamics of dengue epidemics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 321-349. doi: 10.3934/dcdsb.2018099 |
[18] |
Hung-Wen Kuo. Effect of abrupt change of the wall temperature in the kinetic theory. Kinetic and Related Models, 2019, 12 (4) : 765-789. doi: 10.3934/krm.2019030 |
[19] |
Seiji Ukai, Tong Yang, Huijiang Zhao. Exterior Problem of Boltzmann Equation with Temperature Difference. Communications on Pure and Applied Analysis, 2009, 8 (1) : 473-491. doi: 10.3934/cpaa.2009.8.473 |
[20] |
Ming Chen, Meng Fan, Xing Yuan, Huaiping Zhu. Effect of seasonal changing temperature on the growth of phytoplankton. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1091-1117. doi: 10.3934/mbe.2017057 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]