
Previous Article
Mesoscopic model for tumor growth
 MBE Home
 This Issue

Next Article
Modelling periodic oscillations during somitogenesis
Final and peak epidemic sizes for SEIR models with quarantine and isolation
1.  Department of Mathematics, Purdue University, West Lafayette, IN 479071395 
[1] 
Daifeng Duan, Cuiping Wang, Yuan Yuan. Dynamical analysis in disease transmission and final epidemic size. Communications on Pure and Applied Analysis, , () : . doi: 10.3934/cpaa.2021150 
[2] 
Julien Arino, Fred Brauer, P. van den Driessche, James Watmough, Jianhong Wu. A final size relation for epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (2) : 159175. doi: 10.3934/mbe.2007.4.159 
[3] 
Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. Optimal control for an epidemic in populations of varying size. Conference Publications, 2015, 2015 (special) : 549561. doi: 10.3934/proc.2015.0549 
[4] 
Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 15651583. doi: 10.3934/mbe.2017081 
[5] 
Luis F. Gordillo, Stephen A. Marion, Priscilla E. Greenwood. The effect of patterns of infectiousness on epidemic size. Mathematical Biosciences & Engineering, 2008, 5 (3) : 429435. doi: 10.3934/mbe.2008.5.429 
[6] 
Yanan Zhao, Daqing Jiang, Xuerong Mao, Alison Gray. The threshold of a stochastic SIRS epidemic model in a population with varying size. Discrete and Continuous Dynamical Systems  B, 2015, 20 (4) : 12771295. doi: 10.3934/dcdsb.2015.20.1277 
[7] 
M. H. A. Biswas, L. T. Paiva, MdR de Pinho. A SEIR model for control of infectious diseases with constraints. Mathematical Biosciences & Engineering, 2014, 11 (4) : 761784. doi: 10.3934/mbe.2014.11.761 
[8] 
Qun Liu, Daqing Jiang. Dynamics of a multigroup SIRS epidemic model with random perturbations and varying total population size. Communications on Pure and Applied Analysis, 2020, 19 (2) : 10891110. doi: 10.3934/cpaa.2020050 
[9] 
Jianquan Li, Zhien Ma. Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete and Continuous Dynamical Systems  B, 2004, 4 (3) : 635642. doi: 10.3934/dcdsb.2004.4.635 
[10] 
Fred Brauer. Ageofinfection and the final size relation. Mathematical Biosciences & Engineering, 2008, 5 (4) : 681690. doi: 10.3934/mbe.2008.5.681 
[11] 
Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi. Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences & Engineering, 2012, 9 (2) : 297312. doi: 10.3934/mbe.2012.9.297 
[12] 
Edoardo Beretta, Dimitri Breda. An SEIR epidemic model with constant latency time and infectious period. Mathematical Biosciences & Engineering, 2011, 8 (4) : 931952. doi: 10.3934/mbe.2011.8.931 
[13] 
Xia Wang, Shengqiang Liu. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages. Mathematical Biosciences & Engineering, 2012, 9 (3) : 685695. doi: 10.3934/mbe.2012.9.685 
[14] 
Federica Di Michele, Bruno Rubino, Rosella Sampalmieri. A steadystate mathematical model for an EOS capacitor: The effect of the size exclusion. Networks and Heterogeneous Media, 2016, 11 (4) : 603625. doi: 10.3934/nhm.2016011 
[15] 
E. Almaraz, A. GómezCorral. On SIRmodels with Markovmodulated events: Length of an outbreak, total size of the epidemic and number of secondary infections. Discrete and Continuous Dynamical Systems  B, 2018, 23 (6) : 21532176. doi: 10.3934/dcdsb.2018229 
[16] 
John R. Graef, Michael Y. Li, Liancheng Wang. A study on the effects of disease caused death in a simple epidemic model. Conference Publications, 1998, 1998 (Special) : 288300. doi: 10.3934/proc.1998.1998.288 
[17] 
Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reactiondiffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 5166. doi: 10.3934/mbe.2010.7.51 
[18] 
Zhenyuan Guo, Lihong Huang, Xingfu Zou. Impact of discontinuous treatments on disease dynamics in an SIR epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 97110. doi: 10.3934/mbe.2012.9.97 
[19] 
Rong Liu, FengQin Zhang, Yuming Chen. Optimal contraception control for a nonlinear population model with size structure and a separable mortality. Discrete and Continuous Dynamical Systems  B, 2016, 21 (10) : 36033618. doi: 10.3934/dcdsb.2016112 
[20] 
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete and Continuous Dynamical Systems  B, 2013, 18 (7) : 19091927. doi: 10.3934/dcdsb.2013.18.1909 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]