-
Previous Article
Letter to the editors
- MBE Home
- This Issue
-
Next Article
Hybrid multiscale landmark and deformable image registration
The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season
1. | Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada, Canada |
2. | The Centre for Research on Inner City Health, The Keenan Research Centre in the Li Ka Shing Knowledge Institute, of St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada |
3. | Centre for Disease Modeling, Department of Mathematics and Statistics, York University, 4700 Keele Street Toronto, ON, M3J 1P3, Canada |
[1] |
Sunmoo Yoon, Da Kuang, Peter Broadwell, Haeyoung Lee, Michelle Odlum. What can we learn about the Middle East Respiratory Syndrome (MERS) outbreak from tweets?. Big Data & Information Analytics, 2017 doi: 10.3934/bdia.2017013 |
[2] |
Frédéric Bernicot, Bertrand Maury, Delphine Salort. A 2-adic approach of the human respiratory tree. Networks and Heterogeneous Media, 2010, 5 (3) : 405-422. doi: 10.3934/nhm.2010.5.405 |
[3] |
Mary P. Hebert, Linda J. S. Allen. Disease outbreaks in plant-vector-virus models with vector aggregation and dispersal. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2169-2191. doi: 10.3934/dcdsb.2016042 |
[4] |
Saroj P. Pradhan, Janos Turi. Parameter dependent stability/instability in a human respiratory control system model. Conference Publications, 2013, 2013 (special) : 643-652. doi: 10.3934/proc.2013.2013.643 |
[5] |
Folashade B. Agusto, Abba B. Gumel. Theoretical assessment of avian influenza vaccine. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 1-25. doi: 10.3934/dcdsb.2010.13.1 |
[6] |
Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181 |
[7] |
Yanyu Xiao, Xingfu Zou. On latencies in malaria infections and their impact on the disease dynamics. Mathematical Biosciences & Engineering, 2013, 10 (2) : 463-481. doi: 10.3934/mbe.2013.10.463 |
[8] |
Diána H. Knipl, Gergely Röst. Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks. Mathematical Biosciences & Engineering, 2011, 8 (1) : 123-139. doi: 10.3934/mbe.2011.8.123 |
[9] |
Pierre Magal, Ahmed Noussair, Glenn Webb, Yixiang Wu. Modeling epidemic outbreaks in geographical regions: Seasonal influenza in Puerto Rico. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3535-3550. doi: 10.3934/dcdss.2020237 |
[10] |
Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417 |
[11] |
Shuang-Lin Jing, Hai-Feng Huo, Hong Xiang. Modelling the effects of ozone concentration and pulse vaccination on seasonal influenza outbreaks in Gansu Province, China. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1877-1911. doi: 10.3934/dcdsb.2021113 |
[12] |
Karen R. Ríos-Soto, Baojun Song, Carlos Castillo-Chavez. Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 199-222. doi: 10.3934/mbe.2011.8.199 |
[13] |
Andrea Pugliese, Abba B. Gumel, Fabio A. Milner, Jorge X. Velasco-Hernandez. Sex-biased prevalence in infections with heterosexual, direct, and vector-mediated transmission: a theoretical analysis. Mathematical Biosciences & Engineering, 2018, 15 (1) : 125-140. doi: 10.3934/mbe.2018005 |
[14] |
Roberto A. Saenz, Herbert W. Hethcote. Competing species models with an infectious disease. Mathematical Biosciences & Engineering, 2006, 3 (1) : 219-235. doi: 10.3934/mbe.2006.3.219 |
[15] |
Burcu Adivar, Ebru Selin Selen. Compartmental disease transmission models for smallpox. Conference Publications, 2011, 2011 (Special) : 13-21. doi: 10.3934/proc.2011.2011.13 |
[16] |
Muntaser Safan, Klaus Dietz. On the eradicability of infections with partially protective vaccination in models with backward bifurcation. Mathematical Biosciences & Engineering, 2009, 6 (2) : 395-407. doi: 10.3934/mbe.2009.6.395 |
[17] |
Juvencio Alberto Betancourt-Mar, Víctor Alfonso Méndez-Guerrero, Carlos Hernández-Rodríguez, José Manuel Nieto-Villar. Theoretical models for chronotherapy: Periodic perturbations in hyperchaos. Mathematical Biosciences & Engineering, 2010, 7 (3) : 553-560. doi: 10.3934/mbe.2010.7.553 |
[18] |
Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217 |
[19] |
Connell McCluskey. Lyapunov functions for disease models with immigration of infected hosts. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4479-4491. doi: 10.3934/dcdsb.2020296 |
[20] |
Vasiliy N. Leonenko, Sergey V. Ivanov. Prediction of influenza peaks in Russian cities: Comparing the accuracy of two SEIR models. Mathematical Biosciences & Engineering, 2018, 15 (1) : 209-232. doi: 10.3934/mbe.2018009 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]